Question

In: Math

1.) Find the sum V in cartesian and polar coordinates of V1=1000 m/s, V2=1800 m/s 2.)...

1.) Find the sum V in cartesian and polar coordinates of V1=1000 m/s, V2=1800 m/s 2.) Find the difference of V in polar and cartesian coordinates for V3= 800 m/s and V4= 1400 m/s. The angles are angle1= 35 deg, angle2= 60 deg, angle3= 130 deg, angle4= 340 deg.

Solutions

Expert Solution


Related Solutions

Find the polar coordinates of a point with the Cartesian coordinates
 Find the polar coordinates of a point with the Cartesian coordinates (x,y)=(−4√2,4√2).
V1=1000 m/s, V2=1800 m/s, V3= 800 m/s, V4= 1400 m/s angle1= 35 deg, angle2= 60 deg,...
V1=1000 m/s, V2=1800 m/s, V3= 800 m/s, V4= 1400 m/s angle1= 35 deg, angle2= 60 deg, angle3= 130 deg, angle4= 340 deg. 1.) Find the sum V in cartesian and polar coordinates of V1=1000 m/s, V2=1800 m/s 2.) Find the difference of V in polar and cartesian coordinates for V3= 800 m/s and V4= 1400 m/s. The angles are angle1= 35 deg, angle2= 60 deg, angle3= 130 deg, angle4= 340 deg.
The Cartesian coordinates of a point are given. (a) (2, −5) (i) Find polar coordinates (r,...
The Cartesian coordinates of a point are given. (a) (2, −5) (i) Find polar coordinates (r, θ) of the point, where r > 0 and 0 ≤ θ < 2π. (r, θ) = (ii) Find polar coordinates (r, θ) of the point, where r < 0 and 0 ≤ θ < 2π. (r, θ) = (b) (-2, −2) (i) Find polar coordinates (r, θ) of the point, where r > 0 and 0 ≤ θ < 2π. (r, θ) =...
Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point...
Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point b. (2, π/4) c.(−3, −π/6)
Converting the following Cartesian coordinates to polar coordinates..1. (-4,4)2.(3, 3√3)
Converting the following Cartesian coordinates to polar coordinates. 1. (-4,4) 2.(3, 3√3)
The Cartesian coordinates of a point are given. (a)    (−3, 3) (i) Find polar coordinates (r, θ)...
The Cartesian coordinates of a point are given. (a)    (−3, 3) (i) Find polar coordinates (r, θ) of the point, where r > 0 and 0 ≤ θ < 2π. (r, θ) = (ii) Find polar coordinates (r, θ) of the point, where r < 0 and 0 ≤ θ < 2π. (r, θ) = b. (5,5sqrt(3)) (i) Find polar coordinates (r, θ) of the point, where r > 0 and 0 ≤ θ < 2π. (r, θ) = (ii) Find...
(a). The Cartesian coordinates (x, y) = (−4, 4) of a point are given. Find polar...
(a). The Cartesian coordinates (x, y) = (−4, 4) of a point are given. Find polar coordinates (r, θ) of the point so that r > 0 and 0 ≤ θ ≤ 2π. (b). The polar coordinates (r, θ) = (−3, 5π/6) of a point are given. Find the Cartesian coordinates (x, y) of this point.
2. Assume that the potential in Cartesian coordinates is given as V=x2-y2. According to this; (a)...
2. Assume that the potential in Cartesian coordinates is given as V=x2-y2. According to this; (a) The value of the potential at coordinate P (2, -1,3) (b) Electric field, the magnitude of the displacement vector and field lines (c) Calculate the charge density on the conductive surface
a, The vectors v1 = < 0, 2, 1 >, v2 = < 1, 1, 1...
a, The vectors v1 = < 0, 2, 1 >, v2 = < 1, 1, 1 > , v3 = < 1, 2, 3 > , v4 = < -2, -4, 2 > and v5 = < 3, -2, 2 > generate R^3 (you can assume this). Find a subset of {v1, v2, v3, v4, v5} that forms a basis for R^3. b. v1 = < 1, 0, 0 > , v2 = < 1, 1, 0 > and v3...
A car with a mass of 1000 kg and a speed of v1 = 20.0 m/s...
A car with a mass of 1000 kg and a speed of v1 = 20.0 m/s approaches an intersection, as shown in the figure(Figure 1). A 1230 kg minivan traveling at v2 is heading for the same intersection. The car and minivan collide and stick together. The direction of the wreckage after the collision is θ = 44.0 ∘ above the x-axis. You may want to review(Pages 272 - 277). Part A: Find the initial speed of the minivan, assuming...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT