Question

In: Economics

Devon’s utility function is represented by U(w)=2(w1/2) . Devon has just purchased a new home worth...

Devon’s utility function is represented by U(w)=2(w1/2) . Devon has just purchased a new home worth $100,000 and his home represents all of his wealth. The statistics show that in any year there is a two percent (0.02) chance that his home may burn down. If Devon’s house does burn down then the value of the scraps is $30,000.

  1. Using the information above draw Devon’s utility function, plot utility against wealth)
  2. Is Devon risk averse? Explain
  3. The insurance for the house costs 2.5 cents per dollar insured, based on Devon’s preferences how much insurance will he buy?
  4. Devon’s brother also owns a house that is valued at $100,000. His brothers house also has a 2% risk of burning down, if this occurs then the value of the scrap is worth $30,000. Determine the expected utility for Devon if the two brothers share the losses equally. Also assume that the event of both houses burning down are independent.

Solutions

Expert Solution

the term risk -averse describes the investor who chooses the prevention of capital over the potential for a higher-than-average return.

In investing ,risk equals price volatility.A volatile investment can make you rich or devour your savings .A conservative investment will grow slowly and steadily over time.

Low-risk means stability .A low risk investment guarantees a reasonable if unspectacular returnwith a near -zero chance that any of the orginal investment will be lost.


Related Solutions

A farmer has a utility function of u(w) = w^0.5. If there is good weather, the...
A farmer has a utility function of u(w) = w^0.5. If there is good weather, the farmer will earn 100,000. If there is bad weather, she will earn 50,000. The probability of bad weather in any given year is 0.3. An insurance company offers the farmer a contract where the farmer would receive a 50,000 payout when there is bad weather. The insurance premium is denoted as p. What is the maximum premium that the farmer would be willing to...
Tim has a concave utility function u(w) = w ‐ w²/2, where w∈[0,1] His only major...
Tim has a concave utility function u(w) = w ‐ w²/2, where w∈[0,1] His only major asset is shares in an Internet start‐up company. Tomorrow he will learn his stock's value. He believes that it is worth $w0 with probability 4/5 and $w1 with probability 1/5, with w1 > w0.   1) Calculate the expected value of the lottery, the expected utility, and the utility of the expected value. 2) If w0 = 1/3 and w1 = 2/3. Compute the risk...
A person has an expected utility function of the form U(W) = W . He owns...
A person has an expected utility function of the form U(W) = W . He owns a house worth $ 500,000. There is a 50% chance that the house will be burned down. Then, he will become literally penniless . Luckily, however, there are insurance companies which make up for losses from house fire. Currently, they charge $q for $1 compensation (in cases of fire). In other words, the home owner should pay $qK for K units of fire insurance...
Suppose that Elizabeth has a utility function U= (or U=W^(1/3) ) where W is her wealth...
Suppose that Elizabeth has a utility function U= (or U=W^(1/3) ) where W is her wealth and U is the utility that she gains from wealth. Her initial wealth is $1000 and she faces a 25% probability of illness. If the illness happens, it would cost her $875 to cure it. What is Elizabeth’s marginal utility when she is well? And when she is sick? Is she risk-averse or risk-loving? What is her expected wealth with no insurance? What is...
Ethel has preferences over amounts of goods 1 and 2 represented by the utility function u(x1,...
Ethel has preferences over amounts of goods 1 and 2 represented by the utility function u(x1, x2) = (x1)^2 + x2, where x1 denotes how much of good 1 she has and x2 denotes how much of good 2 she has. Write an expression for Ethel’s marginal utility for good 1. Does she like good 1? Explain your answer. Write an expression for Ethel’s marginal rate of substitution at any point. Do Ethel’s preferences exhibit diminishing marginal rate of substitution?...
Suppose that an individual has wealth of $20,000 and utility function U(W) = ln(W), where ln(W)...
Suppose that an individual has wealth of $20,000 and utility function U(W) = ln(W), where ln(W) indicates the natural logarithm of wealth. What is the maximum amount this individual would pay for full insurance to cover a loss of $5,000 with probability 0.10?
A person with initial wealth w0 > 0 and utility function U(W) = ln(W) has two...
A person with initial wealth w0 > 0 and utility function U(W) = ln(W) has two investment alternatives: A risk-free asset, which pays no interest (e.g. money), and a risky asset yielding a net return equal to r1 < 0 with probability p and equal to r2 > 0 with probability 1 (>,<,=) p in the next period. Denote the fraction of initial wealth to be invested in the risky asset by x. Find the fraction x which maximizes the...
"Suppose a consumer has preferences represented by the utility function U(X,Y) = X(^2)Y Suppose Py =...
"Suppose a consumer has preferences represented by the utility function U(X,Y) = X(^2)Y Suppose Py = 1, and the consumer has $360 to spend. Draw the Price-Consumption Curve for this consumer for income values Px =1, Px = 2, and Px = 5. Your graph should accurately draw the budget constraints for each income level and specifically label the bundles that the consumer chooses for each income level. Also for each bundle that the consumer chooses, draw the indifference curve...
Consider a consumer with preferences represented by the utility function: u(x, y) = x1/4y1/2 Suppose the...
Consider a consumer with preferences represented by the utility function: u(x, y) = x1/4y1/2 Suppose the consumer has income M = 10 and the prices are px=1 and Py = 2. (a) Are goods x and y both desirable? (b) Are there implications for the utility maximization problem for the consumer from your finding in 1a? If so, explain in detail. (c) Derive the utility maximizing bundle.
Consider a consumer with preferences represented by the utility function: u(x; y) = x1/4y1/2 Suppose the...
Consider a consumer with preferences represented by the utility function: u(x; y) = x1/4y1/2 Suppose the consumer has income M = 10 and the prices are px = 1 and py = 2. (a) Are goods x and y both desirable? (b) Are there implications for the utility maximization problem for the consumer from your finding in a? If so, explain in detail.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT