In: Finance
Consider the following information for Hope Co.:
State Probability X |
Y |
Boom .35 15% |
10% |
Normal .50 10% |
8% |
Recession .15 5% |
10% |
Please note the solution :
1) Calculation
Particulars | Probablity | Returns X | Returns Y | (X- Mean X) | (Y - Mean Y) | (X- Mean X)2 | (Y - Mean Y)2 | P * (X- Mean X)2 | P * (Y - Mean Y)2 | P(X- Mean X)(Y - Mean Y) |
Boom | 0.35 | 15 | 10 | 4 | 1 | 16 | 1 | 5.6 | 0.35 | 1.4 |
Norma | 0.50 | 10 | 8 | -1 | -1 | 1 | 1 | 0.50 | 0.50 | 0.5 |
Recession | 0.15 | 5 | 10 | -6 | 1 | 36 | 1 | 5.4 | 0.15 | -0.9 |
11.50 | 1 | 1 |
Mean X = P * X
= 0.35 * 15 + 0.50 * 10 + 0.15 * 5
= 11 %
Mean Y = P * Y
= 0.35 * 10 + 0.50 * 8 + 0.15 * 10
= 9 %
Standard Deviation X = [P * (X- Mean X)2 ]1/2
= [11.50] 1/2
= 3.39%
Standard Deviation Y = [P * (Y- Mean Y)2 ]1/2
= [1] 1/2
= 1%
Covariance (X. Y) = P(X- Mean X)(Y - Mean Y)
= 11.50 %2
Correlation = Covariance (X. Y) / (Standard Deviation X ) * (Standard Deviation Y)
= 1 / (3.39 * 1 )
= 0.295
2) Answers
> Expected return of portfolio = 11% * 8000/10000 + 9% * 2000/10000
= 10.60 % Answer
> Standard deviation of portfolio =
Thus , SD = [ (0.8)2 * (3.39)2 + (0.20)2 * (1)2 + (2 * 0.80 * 0.20 * 3.39 * 1 * 0.295)]1/2
= 2.78 % Answer
> Exact Real rate of return = (1+Nominal rate ) / (1+inflation rate )
= (1.1060) / (1.045) - 1
= 5.84 % Answer
> Approximate real rate = Nominal rate - inflation rate
= 10.60 - 4.50
= 6.10 % Answer