Question

In: Economics

Assume the existence of a two-period Diamond Model. Individuals may live for up to two periods...

Assume the existence of a two-period Diamond Model. Individuals may live for up to two periods t and t + 1. All individuals both live and work in period t. Some proportion γ of individuals die at the end of the first period, and do not consume in the second period. The remaining proportion (1 − γ) will will live and consume in period 2. Expected lifetime utility is given by: 2 U(C1t , C2t+1) = ln(C1t) + (1 − γ)ln(C2t+1) It is assumed that there is no discount factor and that individual’s value second period consumption as much as they value first period consumption. The lifetime budget constraint, which is not directly effected by the possibility of death, is given by: C1t + C2t+1 1+rt+1 = wt 1 + rt+1 and wt denote the marginal products of capital and labour respectively. The production function in this economy is given by Yt = Kα t L. L denotes a fixed quantity of labour. That is, there is no population growth in the model. We assume that At = 1, and there is no growth in the state of technology. a) Solve for the optimal values of C1t and C2t+1 (4 pts). b) Find the optimal savings rate s in this economy. (2 pts) c) Assume that there is 100% capital depreciation from one year to the next, and next year’s capital stock is simply this years investment. Solve for the steady state level of capital and output, denoted by K∗ and Y ∗ (4 pts). d) Solve for the steady state levels of wt , 1 + rt+1, C1t ,C2t+1, and denote your solutions by w ∗ ,1 + r ∗ ,C ∗ 1 , and C ∗ 2 respectively (12 pts) e)Using your results from d), find ∂C∗ 2 ∂γ (6 pts). f) Is your result from e) positive, negative, zero, or are we able to tell? Explain the intuition behind this finding (8 pts).

Solutions

Expert Solution

The pure-exchange OLG model was augmented with the introduction of an aggregate neoclassical production by Peter Diamond.[4]  In contrast, to Ramsey–Cass–Koopmans neoclassical growth model in which individuals are infinitely-lived and the economy is characterized by a unique steady-state equilibrium, as was established by Oded Galor and Harl Ryder,[11] the OLG economy may be characterized by multiple steady-state equilibria, and initial conditions may therefore affect the long-run evolution of the long-run level of income per capita.

Since initial conditions in the OLG model may affect economic growth in long-run, the model was useful for the exploration of the convergence hypothesis.[12]

Convergence of OLG Economy to Steady State

The economy has the following characteristics:[13]

  • Two generations are alive at any point in time, the young (age 1) and old (age 2).
  • The size of the young generation in period t is given by Nt = N0 Et.
  • Households work only in the first period of their life and earn Y1,t income. They earn no income in the second period of their life (Y2,t+1 = 0)
  • They consume part of their first period income and save the rest to finance their consumption when old.
  • At the end of period t, the assets of the young are the source of the capital used for aggregate production in period t+1.So Kt+1 = Nt,a1,t where a1,t is the assets per young household after their consumption in period 1. In addition to this there is no depreciation.
  • The old in period t own the entire capital stock and consume it entirely, so dissaving by the old in period t is given by Nt-1,a1,t-1 = Kt.
  • Labor and capital markets are perfectly competitive and the aggregate production technology is CRS, Y = F(K,L).

Two-sector OLG modelEdit

The one-sector OLG model was further augmented with the introduction of a two-sector OLG model by Oded Galor.[5] The two-sector model provides a framework of analysis for the study of the sectoral adjustments to aggregate shocks and implications of international trade for the dynamics of comparative advantage. In contrast to the Uzawa two-sector neoclassical growth model,[14] the two-sector OLG model may be characterized by multiple steady-state equilibria, and initial conditions may therefore affect the long-run position of an economy


Related Solutions

Consider a model in which individuals live for two periods and have utility functions of the...
Consider a model in which individuals live for two periods and have utility functions of the form ? = ??(?1) + .5??(?2). They earn income of $10,000 in the first period and save S to finance consumption in the second period. The interest rate, r, is 20. a. Set up the individual’s lifetime utility maximization problem. Solve for the optimal C1, C2, and S. (Hint: ????1,?2 = −.5?2/?1 and the budget line is given by C2= (10,000-C1)(1+r) hence the slope...
Two period saving model) Consider an economy populated by identical people who live for two periods....
Two period saving model) Consider an economy populated by identical people who live for two periods. They have preferences over consumption of the following form: U=ln(c1) +βln(c2), where ct denotes the stream of consumption in period t. They also receive an income of 50 dollars in period 1 and an income of 55 dollars in period 2. They can use savings to smooth consumption over time, and if they save, they will earn an interest rate of 10% per period....
Vesta will live only for two periods. In period 0 she will earn $50,000. In period...
Vesta will live only for two periods. In period 0 she will earn $50,000. In period 1 she will retire on Latmos Hill and live on her savings. Her utility function is U(C0,C1) = C0C1, where C0 is consumption in period 0 ,and C1 is consumption in period 1 .She can borrow and lend at the interest rate i= 0.10. a) Write an expression for her consumption in period 0 as a function of the parameters specified. b) Having solved...
Consider an economy with identical individuals who live for two periods. Half of the workers are...
Consider an economy with identical individuals who live for two periods. Half of the workers are in the 1st, the other half in the second period of life. Their utility function is ut= log(ct) in each period. They work in the first period and receive an income 100 and are retired in the second period and receive no income. They can save as much of their income as they like in bank accounts, earning an interest rate of r per...
Illiquid capital and financial intermediation.(6pts) Consider an environment in which individuals live for two periods in...
Illiquid capital and financial intermediation.(6pts) Consider an environment in which individuals live for two periods in overlapping generations and are endowed with y only in the first period. The population Nt grows by 10% each period. Capital has a minimum size k∗ such that y < k∗ < N1y, where N1 is the population in the initial period. Moreover, capital has a one-period rate of return x, and there is a constant stock of fiat money owned by the initial...
Consider a two-period model, inhabited by two individuals, Anna and Bob (or as they like to...
Consider a two-period model, inhabited by two individuals, Anna and Bob (or as they like to be called, A, and B). A has the following preferences uA(c0,A cA1 ) = ln(cA0 ) + 0.9 ln(cA1 ), while B has the following preferences u B ( c 0 , B c B1 ) = l n ( c B0 ) + 0 . 8 l n ( c B1 ) . Consumer A receives an income Y0A = 100 in period...
Consider a two-period model, inhabited by two individuals, Anna and Bob (or as they like to...
Consider a two-period model, inhabited by two individuals, Anna and Bob (or as they like to be called, A, and B). A has the following preferences uA(cA0, cA 1 ) = ln(cA 0 )+0.9 ln(cA 1 ), while B has the following preferences uB(cB0, cB 1 ) = ln(cB0)+0.8 ln(cB1 ). Consumer A receives an income YA0 = 100 in period 0 and YA1 = 150 in period 1. On the other side, Consumer B receives an income YB0 =...
Consider a two-period binomial model for the stock price with both periods of length one year....
Consider a two-period binomial model for the stock price with both periods of length one year. Let the initial stock price be S0 = 100. Let the up and down factors be u = 1.25 and d = 0.75, respectively and the interest rate be r = 0.05 per annum. If we are allowed to choose between call and put option after one year, depending on the up and down states (head and tail respectively), which option do you choose...
Recall the basic model of consumption choice. There are two periods: present and future. Assume households...
Recall the basic model of consumption choice. There are two periods: present and future. Assume households have the following lifetime utility: u(c) + βu(c f ) where u(c) = √ c, the discount rate β < 1 (i.e., the rate at which households discount utility from future consumption). Assume also that households start with no initial wealth, a = 0, but receive income today, y, and income tomorrow, y f . The interest rate, r, is equal to 4%. Assume...
Assume a consumer lives for two periods. His income and consumption in the two periods are...
Assume a consumer lives for two periods. His income and consumption in the two periods are Y1 and C1, and Y2 and C2 respectively. Ignore price level changes and further assume that this consumer saves income (S) in the first period and this saving earns interest. With consumption in two periods being constrained by income in the two periods derive the intertemporal budget constraint.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT