In: Finance
Q1) A(n) 8.3% bond matures in 7 years and has a current yield (not YTM) of 6%. The bond's current trading price is $________.
Q2) A 4% coupon bond with 6 months remaining until maturity is currently trading at $997.26. Assume semi-annual coupon payments. The bond's YTM is__________%.
If you can do both, please do! Thank you.
| Q1) | Given, | |||||||
| Coupon rate | 8.30% | |||||||
| Maturity | 7 years | |||||||
| Current yield | 6% | |||||||
| Assuming face value of bond is $1000 | ||||||||
| Annual coupon= $1000*8.30% | ||||||||
| $83 | ||||||||
| We know, | ||||||||
| Current yield= Annual coupon payment/Current market price of bond | ||||||||
| Current market price of bond= Annual coupon payment/Current yield | ||||||||
| 83/0.06 | ||||||||
| $1,383.33 | ||||||||
| Q2) | Given, | |||||||
| Coupon rate | 4% | |||||||
| Maturity | 6 months | |||||||
| Current Price | $997.26 | |||||||
| Assuming face value of bond is $1000 | ||||||||
| Annual coupon= $1000*4% | ||||||||
| $40 | ||||||||
| Semi-annual coupon= $40/2= $20 | ||||||||
| We know, | ||||||||
| YTM=(C+(F-P)/n)/((F+P)/2) | ||||||||
| where, | ||||||||
| C= semi-annual coupon payments | ||||||||
| F= face value | ||||||||
| P= current price | ||||||||
| n= periods | ||||||||
| Since the bond will mature in 6 months so n will be 1 | ||||||||
| YTM=(20+(1000-997.26)/1)/((1000+997.26)/2) | ||||||||
| 2.28% | ||||||||