Question

In: Physics

1. In an x-ray tube, electrons are accelerated in a uniform electric field and then strike...

1. In an x-ray tube, electrons are accelerated in a uniform electric field and then strike a metal target. Suppose an electron starting from rest is accelerated in a uniform electric field directed horizontally and having a magnitude of 2500N/C . The electric field covers a region of space 12.0cm  wide.

Part A

What is the speed of the electron when it strikes the target?

Express your answer with the appropriate units.

Part B

How far does it fall under the influence of gravity during its flight?

Express your answer with the appropriate units.

Show your work.

2. Two large parallel plates are separated by 0.80cm and carry uniform charge densities equal in magnitude and opposite in sign. A proton is between the plates and has an acceleration of magnitude 1.31

Solutions

Expert Solution

Here is what I solved before, please modify the figures as per your question. Please let me know if you have further questions. Ifthis helps then kindly rate 5-stars.

1. n an x-ray tube, electrons are accelerated in a uniform electric field and then strike a metal target. Suppose an electron starting from rest is accelerated in a uniform electric field directed horizontally and having a magnitude of 2900 N/C. The electric field covers a region of space 12.5 cm wide.

A. What is the speed of the electron when it strikes the target?

B. How far does it fall under the influence of gravity during its flight?   

A) find force due to electric field using charge of an electron.

Find the acceleration using mass of an electron

Use the given distance to find the final speed

B) We need the time in flight:

Now find the distance fell due to gravity:

It fell 2.42*10-15m

2 Two large parallel plates are separated by 0.90cm and carry uniform charge densities equal in magnitude and opposite in sign. A proton is between the plates and has an acceleration of magnitude 1.40


Related Solutions

In a cathode ray tube, electrons are accelerated from rest by a constant electric force of...
In a cathode ray tube, electrons are accelerated from rest by a constant electric force of magnitude 6.40 × 10−17 N during the first 4.40 cm of the tube’s length; then they move at essentially constant velocity another 45.0 cm before hitting the screen. a.How long does it take them to travel the length of the tube? b.Find the speed of the electrons when they hit the screen. c.How long does it take them to travel the length of the...
The electron gun in a television tube uses a uniform electric field to accelerate electrons from...
The electron gun in a television tube uses a uniform electric field to accelerate electrons from rest to 4.7×107 m/s in a distance of 1.3 cm . What is the electric field strength?
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference...
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference of 11.6 kV. They are moving in the +x-direction when they enter the space between the plates of a parallel plate capacitor. There is a potential difference of 320 V between the plates. The plates have length 8.93 cm and are separated by 1.10 cm. The electron beam is deflected in the negative y-direction by the electric field between the plates.    where P...
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference...
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference of 13.8 kV. They are moving in the +x-direction when they enter the space between the plates of a parallel plate capacitor. There is a potential difference of 313 V between the plates. The plates have length 7.81 cm and are separated by 1.10 cm. The electron beam is deflected in the negative y-direction by the electric field between the plates. where P =...
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference...
Electrons in a cathode ray tube start from rest and are accelerated through a potential difference of 12.2 kV. They are moving in the +x-direction when they enter the space between the plates of a parallel plate capacitor. There is a potential difference of 338 V between the plates. The plates have length 9.37 cm and are separated by 1.10 cm. The electron beam is deflected in the negative y-direction by the electric field between the plates. where P =...
An electron is to be accelerated in a uniform electric field having a strength of 4.58×106...
An electron is to be accelerated in a uniform electric field having a strength of 4.58×106 V/m. (a) What energy in keV is given to the electron if it is accelerated through 0.562 m? (b) Over what distance would it have to be accelerated to increase its energy by 58.0 GeV? Draw a diagram and show your parameters and all your work.
An electron in the beam of a cathod-ray tube is accelerated by a potential difference of...
An electron in the beam of a cathod-ray tube is accelerated by a potential difference of 2.20 kV . Then it passes through a region of transverse magnetic field, where it moves in a circular arc with a radius of 0.185 m . 1) What is the magnitude of the field? Express your answer with the appropriate units.
A proton is projected in the positive x direction into a region of uniform electric field...
A proton is projected in the positive x direction into a region of uniform electric field E with arrow = (-6.20 ✕ 105) î N/C at t = 0. The proton travels 7.40 cm as it comes to rest. (a) Determine the acceleration of the proton. magnitude _________m/s2 direction _________ (b) Determine the initial speed of the proton. magnitude _________m/s direction ___________ (c) Determine the time interval over which the proton comes to rest. ________s
The electrons in a cathode ray tube are emitted by a hot filament cathode and are...
The electrons in a cathode ray tube are emitted by a hot filament cathode and are accelerated by an electric field applied between the cathode and two orthogonal pairs of parallel plate electrodes. The beam passes through the gap between the electrodes and can be deflected up and down, or left and right if the parallel plates are appropriately biased. As the electrons pass through the electrodes, their kinetic energy increases. Assume the electrons are emitted from the cathode with...
An electron is released in a uniform electric field, and it experiences an electric force of...
An electron is released in a uniform electric field, and it experiences an electric force of 2.2 ✕ 10-14 N downward. What are the magnitude and direction of the electric field? Magnitude ____________ N/C Direction upward, to the left, to the right or downward?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT