In: Statistics and Probability
1)For this problem, carry at least four digits after the decimal
in your calculations. Answers may vary slightly due to
rounding.
In a random sample of 65 professional actors, it was found that 40
were extroverts.
(a) Let p represent the proportion of all actors who
are extroverts. Find a point estimate for p. (Round your
answer to four decimal places.)
(b) Find a 95% confidence interval for p. (Round your
answers to two decimal places.)
| lower limit = | |
| upper limit = | 
2)For this problem, carry at least four digits after the decimal
in your calculations. Answers may vary slightly due to
rounding.
In a random sample of 502 judges, it was found that 295 were
introverts.
(a) Let p represent the proportion of all judges who
are introverts. Find a point estimate for p. (Round your
answer to four decimal places.)
(b) Find a 99% confidence interval for p. (Round your
answers to two decimal places.)
| lower limit = | |
| upper limit = | 
3)Independent random samples of professional football and basketball players gave the following information. Assume that the weight distributions are mound-shaped and symmetric.
Weights (in lb) of pro football players: x1; n1 = 21
| 244 | 263 | 255 | 251 | 244 | 276 | 240 | 265 | 257 | 252 | 282 | 
| 256 | 250 | 264 | 270 | 275 | 245 | 275 | 253 | 265 | 270 | 
Weights (in lb) of pro basketball players: x2; n2 = 19
| 205 | 200 | 220 | 210 | 192 | 215 | 222 | 216 | 228 | 207 | 
| 225 | 208 | 195 | 191 | 207 | 196 | 181 | 193 | 201 | 
(a) Use a calculator with mean and standard deviation keys to calculate x1, s1, x2, and s2. (Round your answers to one decimal place.)
| x1 = | |
| s1 = | |
| x2 = | |
| s2 = | 
(b) Let μ1 be the population mean for
x1 and let μ2 be the
population mean for x2. Find a 99% confidence
interval for μ1 − μ2.
(Round your answers to one decimal place.)
| lower limit = | |
| upper limit = | 
1)
a)
Number of Items of Interest,   x =  
40
Sample Size,   n =    65
      
Sample Proportion ,    p̂ = x/n =   
0.6154
b)
z -value =   Zα/2 =    1.960  
[excel formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.060343          
margin of error , E = Z*SE =    1.960  
*   0.06034   =   0.1183
          
       
95%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.61538  
-   0.11827   =   0.497
Interval Upper Limit = p̂ + E =   0.61538  
+   0.11827   =   0.734
          
       
95%   confidence interval is (   0.50
< p <    0.73 )
===============
2)
a)
Number of Items of Interest,   x =  
295
Sample Size,   n =    502
      
Sample Proportion ,    p̂ = x/n =   
0.5876
      
b)
z -value =   Zα/2 =    1.960  
[excel formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.021971          
margin of error , E = Z*SE =    1.960  
*   0.02197   =   0.0566
          
       
99%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.58765  
-   0.05659   =   0.531
Interval Upper Limit = p̂ + E =   0.58765  
+   0.05659   =   0.644
          
       
99%   confidence interval is (   0.53
< p <    0.64 )