In: Chemistry
You prepare a buffer solution from 10.0 mL of 0.100 M MOPS
(3-morpholinopropane-1-sulfonic acid) and 10.0 mL of 0.084 M NaOH.
Next, you add 1.00 mL of 4.69 × 10-6 M lidocaine to this mixture
Denoting lidocaine as L, calculate the fraction of lidocaine
present in the form LH .
The Ka of MOPS is 6.3 e-8, and the Kb of lidocaine is
8.7e-7
moles of MOPS(HA)=0.1 mol/L*10.0ml= 0.1 mol/L*10ml 10^-3 L/ml=10^-3 moles
moles of NaOH=0.084 mol/L*10.0ml=0.084 mol/L *10ml 10^-3 L/ml=0.84 *10^-3 moles
moles of MOPs left after neutralization with strong base=10^-3 moles-0.84 *10^-3 moles=0.16*10^-3 moles
moles of L added=4.69*10^-6 mol/L*1.00 ml* 10^-3 L/ml=4.69*10^-9 moles(base)
L reacts with HA thus,
now,L+HA=LH+A- (net rxn),knet
we know, L+H2O=LH+OH- kb=8.7*10^-7
kb=[LH][OH-]/[L]
HA+H2O=A- +H3O+ ka=6.3*10^-8
ka=[A-] [H3O+]/[HA]
ka*kb= [A-] [H3O+]/[HA]
[LH][OH-]/[L]=[LH][A-]/[L][HA]*kw
knet =ka*kb/kw=[LH][A-]/[L][HA]
knet =(6.3*10^-8)(8.7*10^-7)/10^-14=54.81 *10^-1=5.48
ICE table
[L]
[HA]
[LH]
[A-]
Initial conc(moles) 4.69*10^-9 0.16*10^-3 0 0
change -X -X +X +X
eqm 4.69*10^-9-X 0.16*10^-3-X x x
knet= [LH][A-]/[L][HA]=X^2/(4.69*10^-9-X)
(0.16*10^-3-X)=X^2/(4.69*10^-9) (0.16*10^-3)[x<<small)
5.48=X^2/(4.69*10^-9) (0.16*10^-3)=
4.13 *10^-12=X^2
X=2.03 *10^-6 moles=[LH]=[A-]
fraction of [LH]=[LH]/[L]+[LH]+[A-]+[HA]
=(2.03 *10^-6 moles)/ [(4.69*10^-9)+(2.03 *10^-6) +2.03 *10^-6)+ (0.16*10^-3)]
=2.03 *10^-6/[0.16*10^-3](ignoring smaller values)
=12.68*10^-3=0.0127
[LH]=0.0127
%[LH]=0.0127*100=1.27%