Question

In: Physics

Q1 Calculate the period of a satellite orbiting the Moon, 100 km above the Moon's surface....

Q1

Calculate the period of a satellite orbiting the Moon, 100 km above the Moon's surface. Ignore effects of the Earth. The radius of the Moon is 1740 km.

Express your answer using two significant figures.

Solutions

Expert Solution

We use the fact that satellite circular motion is due to gravitational's attraction force. Hence, centripetal force=gravitational force. 'R' is distance b/w moon and satellite .Hence R=1740+110=1850Km .On solving,time period of satellite comes out to be 7139 sec or 118.98 min.


Related Solutions

An Earth satellite moves in a circular orbit 924 km above Earth's surface with a period...
An Earth satellite moves in a circular orbit 924 km above Earth's surface with a period of 103.3 min. What are (a) the speed and (b) the magnitude of the centripetal acceleration of the satellite?
A satellite is launched into an orbit at an altitude 200 km above the surface. Onboard...
A satellite is launched into an orbit at an altitude 200 km above the surface. Onboard is an exquisitely sensitive atomic clock that is synchronized with an identical clock on Earth. After orbiting for one year, the satellite is captured, returned to Earth, and the clocks compared. What will be the shift in time between the two clocks?
A 4600 kg lunar lander is in orbit 40 km above the surface of the moon....
A 4600 kg lunar lander is in orbit 40 km above the surface of the moon. It needs to move out to a 280 km high orbit in order to link up with the mother ship that will take the astronauts home. How much work must the thrusters do?
An artificial satellite is in a circular orbit d=470.0 km above the surface of a planet...
An artificial satellite is in a circular orbit d=470.0 km above the surface of a planet of radius  r=3.95×10^3 km. The period of revolution of the satellite around the planet is T=1.15 hours. What is the average density of the planet?
Assume that a rocket is in Earth’s orbit at 450 km above the surface. a) Calculate...
Assume that a rocket is in Earth’s orbit at 450 km above the surface. a) Calculate the orbital velocity in km/s b) Calculate the escape velocity from said orbit and g in this orbit
During the Apollo XI Moon landing, a retroreflecting panel was erected on the Moon's surface. The...
During the Apollo XI Moon landing, a retroreflecting panel was erected on the Moon's surface. The speed of light can be found by measuring the time it takes a laser beam to travel from Earth, reflect from the panel, and return to Earth. If this interval is found to be 2.505 s, what is the measured speed of light? Take the center-to-center distance from Earth to Moon to be 3.84 ? 108 m. Assume that the Moon is directly overhead...
During the Apollo XI Moon landing, a retroreflecting panel was erected on the Moon's surface. The...
During the Apollo XI Moon landing, a retroreflecting panel was erected on the Moon's surface. The speed of light can be found by measuring the time it takes a laser beam to travel from Earth, reflect from the panel, and return to Earth. If this interval is found to be 2.51 s, what is the measured speed of light? Take the center-to-center distance from Earth to Moon to be 3.84 X 108 m. Assume that the Moon is directly overhead...
On Apollo Moon missions, the lunar module would blast off from the Moon's surface and dock...
On Apollo Moon missions, the lunar module would blast off from the Moon's surface and dock with the command module in lunar orbit. After docking, the lunar module would be jettisoned and allowed to crash back onto the lunar surface. Seismometers placed on the Moon's surface by the astronauts would then pick up the resulting seismic waves. Find the impact speed of the lunar module, given that it is jettisoned from an orbit 170 km above the lunar surface moving...
What is the velocity and period of a satellite orbiting planet earth? Answer using a Gravitacional...
What is the velocity and period of a satellite orbiting planet earth? Answer using a Gravitacional approach*
(a) A 374 kg satellite orbits the Earth at a height of 3197 km above the...
(a) A 374 kg satellite orbits the Earth at a height of 3197 km above the Earth's surface. Assume the Earth has a mass of 5.98 x 1024 kg and a radius of 6,380 km. Find the velocity (in m/s) of the satellite in its orbit. (b) Calculate the period of the satellite's orbit when it orbits the Earth at a height of 3197 km above the Earth's surface. State your answer in minutes.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT