Question

In: Physics

Two thin lenses with a focal length of magnitude 12.0 cm, the first diverging and the...

Two thin lenses with a focal length of magnitude 12.0 cm, the first diverging and the second converging, are located 9.00 cm apart. An object 2.50 mm tall is placed 20.0 cm to the left of the first (diverging) lens. (a) How far from this first lens is the final image formed? (b) Is the final image real or virtual? (c) What is the height of the final image? Is it noninverted or inverted?

Solutions

Expert Solution

(a)

For diverging lens :

f = focal length = - 12 cm

do = object distance = 20 cm

ho = object height = 2.50 mm = 0.25 cm

hi = image height

di = image distance

using the lens equation

1/di + 1/do = 1/f

1/di + 1/20 = 1/(-12)

di = - 7.5 cm on the same side as the original object.

magnification is given as

hi/ho = - di/do

hi/0.25 = - (- 7.5)/20

hi = 0.09375 cm

This image behaves as object for the converging lens

For converging lens :

f = focal length = 12 cm

do = object distance = 9 + 7.5 = 16.5 cm

di = image distance

ho = object height = 0.09375 cm

hi = image height

using the lens equation

1/di + 1/do = 1/f

1/di + 1/16.5 = 1/(12)

di = 44 cm to the right of converging lens

D = distance from the diverging lens = 44 + 9 = 53 cm

b)

The final image is real since the object distance for converging lens is greater than its focal length.

c)

For converging lens :

magnification is given as

hi/ho = - di/do

hi/0.09375 = - 44/16.5

hi = - 0.25 cm

the height of the image is 0.25 cm and it is inverted


Related Solutions

Two thin lenses with a focal length of magnitude 12.0cm, the first diverging and the second...
Two thin lenses with a focal length of magnitude 12.0cm, the first diverging and the second converging, are located 9.00cm apart. An object 2.50mm tall is placed 20.0cm to the left of the first (diverging) lens. Note that focal length of diverging lens is a negative number while focal length of converging lens would be positive. (a) Draw a figure showing both lenses and use principal rays to find approximate position of the image formed by the first lens. (b)...
Two thin lenses each with focal lengths of f1 = +12.0 cm and f2 = +10.0...
Two thin lenses each with focal lengths of f1 = +12.0 cm and f2 = +10.0 cm; are located 30.0 cm apart with their optical axes aligned as shown. An object is placed 35.0 cm from the first lens. After the light has passed through both lenses, at what distance from the second lens will the final image be formed?
Two identical diverging lenses are separated by 17 cm. The focal length of each lens is...
Two identical diverging lenses are separated by 17 cm. The focal length of each lens is -8.0 cm. An object is located 4.0 cm to the left of the lens that is on the left. Determine the final image distance relative to the lens on the right.
Two lenses, one converging with focal length 22.0 cmcm and one diverging with focal length −−...
Two lenses, one converging with focal length 22.0 cmcm and one diverging with focal length −− 11.0 cmcm , are placed 25.0 cmcm apart. An object is placed 60.0 cmcm in front of the converging lens. Part A Find the final image distance from second lens. Follow the sign conventions. Express your answer to two significant figures and include the appropriate units. Part B Determine the magnification of the final image formed. Follow the sign conventions. Express your answer using...
A diverging lens has a focal length of magnitude 21.4 cm. (a) Locate the images for...
A diverging lens has a focal length of magnitude 21.4 cm. (a) Locate the images for each of the following object distances. 42.8 cm distance cm location 21.4 cm distance cm location 10.7 cm distance cm location (b) Is the image for the object at distance 42.8 real or virtual? real virtual Is the image for the object at distance 21.4 real or virtual? real virtual Is the image for the object at distance 10.7 real or virtual? real virtual...
A diverging lens has a focal length of magnitude 16.2 cm. (a) Locate the images for...
A diverging lens has a focal length of magnitude 16.2 cm. (a) Locate the images for each of the following object distances. 32.4 cm distance      cm location      ---Select--- in front of the lens behind the lens 16.2 cm distance      cm location      ---Select--- in front of the lens behind the lens 8.1 cm distance      cm location      ---Select--- in front of the lens behind the lens (b) Is the image for the object at distance 32.4 real or virtual? realvirtual     Is the...
A diverging lens with a focal length of -13 cm is placed 12 cm to the...
A diverging lens with a focal length of -13 cm is placed 12 cm to the right of a converging lens with a focal length of 21 cm . An object is placed 40 cm to the left of the converging lens. Where will the final image be located?Where will the image be if the diverging lens is 41 cm from the converging lens?
Two converging lenses, each of focal length 15 cm, are placed 52 cm apart, and an...
Two converging lenses, each of focal length 15 cm, are placed 52 cm apart, and an object is placed 30 cm in front of the first lens (a) Where is the final image formed with respect to the second lense? 60.8 cm behind the second lense 60.8 cm in front of the second lense 47.1 cm in front of the second lense 47.1 cm behind the second lense (b) What is the magnification of the system? 0.5 –1 –3.1 2.1
Two converging lenses, each of focal length 14.9 cm, are placed 39.5 cm apart, and an...
Two converging lenses, each of focal length 14.9 cm, are placed 39.5 cm apart, and an object is placed 30.0 cm in front of the first lens. Where is the final image formed? The image is located  cm  ---Location--- in front of the first lens. in front of the second lens. behind the second lens. What is the magnification of the system? M =  ✕
Two converging lenses, each of focal length 14.9 cm, are placed 39.8 cm apart, and an...
Two converging lenses, each of focal length 14.9 cm, are placed 39.8 cm apart, and an object is placed 29.1 cm in front of the first. How far from the first lens is the final image formed? Answer in units of cm. What is the magnification of the system?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT