In: Finance
Assume S = $42, K = 45, div = 0, r = 0.04, sigma(volatility)= 0.48, and 80 days until expiration. What is the premium on a knock-out put option with a down-and-out barrier of $44?
A) $2.13
B) $3.13
C) $3.47
D) $4.07
Answer: C
need details of solution
The down-and-out put is knocked out worthless if the asset falls to the barrier B?, while if it does not, the holder receives the payoff of a vanilla put.
This is modified version of Black schole model discussed by John C Hull , while dicussing Barrier option as below.
Calculation below
Barrier options | |||||||||||||
Using Hull | Intermediate results | ||||||||||||
Data | |||||||||||||
S | 42 | S*exp(-qT) | 42 | ||||||||||
q | 0% | K*exp(-rT) | 44.6018 | ||||||||||
K | 45 | Sigma*sqrt(T) | 0.22627 | ||||||||||
H | 44 | d1 | -0.1525 | N(d1) | 0.4394 | N(-d1) | 0.5606 | ||||||
r | 4% | d2 | -0.3788 | N(d2) | 0.35243 | N(-d2) | 0.64757 | ||||||
T (80 days) | 0.222222222 | Lambda | 0.67361 | ||||||||||
Sigma | 48% | y | 0.2587 | ||||||||||
x1 | -0.0532 | ||||||||||||
Call | Put | y1 | 0.35801 | ||||||||||
Regular options | 2.736 | 5.338 | |||||||||||
Barrier H<K | |||||||||||||
Down-and-in | 4.729 | 5.338 | |||||||||||
Down-and-out | -1.993 | 3.467 |