Question

In: Math

Gru's schemes have a/an 7% chance of succeeding. An agent of the Anti-Villain League obtains access...

Gru's schemes have a/an 7% chance of succeeding. An agent of the Anti-Villain League obtains access to a simple random sample of 1100 of Gru's upcoming schemes.
Find the probability that...
(Answers should be to four places after the decimal, using chart method, do NOT use the continuity correction):

...less than 101 schemes will succeed:

...more than 95 schemes will succeed:

...between 95 and 101 schemes will succeed:

...less than 8.5% of schemes will succeed:

...more than 9.5% of schemes will succeed:

...between 8.5% and 9.5% of schemes will succeed:

Solutions

Expert Solution

a)

Sample size , n =    1100                      
Probability of an event of interest, p =   0.07                      
left tailed                          
X ≤    101                      
                          
Mean = np =    77                      
std dev ,σ=√np(1-p)=   8.462                      
                          
P(X ≤   101   )                  
                          
Z=(X - µ ) / σ = (   101   -   77   ) /   8.462   =   2.836
                          
=P(Z≤   2.836   ) =    0.9977 (answer)

b)

Sample size , n =    1100                      
Probability of an event of interest, p =   0.07                      
right tailed                          
X >   95                      
                          
Mean = np =    77                      
std dev ,σ=√np(1-p)=   8.4623                      
                          
P(X >   95   )                  
                          
Z=(X - µ ) / σ = (   95   -   77   ) /   8.462   =   2.127
                          
=P(Z >   2.127   ) =    0.0167 (answer)

c)

Sample size , n =    1100                              
Probability of an event of interest, p =   0.07                              
we need to calculate probability for ,                                  
95   ≤ X ≤    101                          
Mean = np =    77                              
std dev ,σ=√np(1-p)=   8.4623                              
                                  
P (   95   ≤ X ≤    101   )                  
Z1 =   (X1 - µ ) / σ =   2.127                          
Z2 =   (X2- µ ) / σ =   2.836                          
                                  
P (    2.1271   ≤ Z ≤   2.836   )                   
                                  
= P ( Z ≤   2.836   ) - P ( Z ≤   2.127   ) =    0.9977   -    0.9833   =   0.0144 (answer)

d)

population proportion ,p=   0.07                          
n=   1100                          
                              
std error , SE = √( p(1-p)/n ) =    0.0077                          
                              
sample proportion , p̂ =   0.085                          
Z=( p̂ - p )/SE= (   0.085   -   0.07   ) /    0.008   =   1.950  
P ( p̂ <    0.085   ) =P(Z<( p̂ - p )/SE) =                      
                              
=P(Z <    1.950   ) =    0.9744                   (answer)

e)

population proportion ,p=   0.07                      
n=   1100                      
                          
std error , SE = √( p(1-p)/n ) =    0.0077                      
                          
sample proportion , p̂ =   0.095                      
Z=( p̂ - p )/SE= (   0.095   -   0.07   ) /    0.0077   =   3.250
P ( p̂ >    0.095   ) =P(Z > ( p̂ - p )/SE) =                  
                          
=P(Z >   3.250   ) =    0.0006 (answer)

f)

                       population proportion ,p=   0.07                      
                       n=   1100                      
                                                  
                       std error , SE = √( p(1-p)/n ) =    0.0077                      
                                                  
                       we need to compute probability for                           
                       0.085   < p̂ <   0.095                  
                                                  
                       Z1 =( p̂1 - p )/SE= (   0.085   -   0.07   ) /    0.0077   =   1.950
                       Z2 =( p̂2 - p )/SE= (   0.095   -   0.07   ) /    0.0077   =   3.250
P(   0.085   < p̂ <   0.095   ) =    P[( p̂1-p )/SE< Z <(p̂2-p)/SE ]    =P(    1.950   < Z <   3.250   )          
                                                  
= P ( Z <   3.250   ) - P (    1.950   ) =    0.9994   -   0.9744   =   0.0250 (answer)


Related Solutions

Gru's schemes have a/an 9% chance of succeeding. An agent of the Anti-Villain League obtains access...
Gru's schemes have a/an 9% chance of succeeding. An agent of the Anti-Villain League obtains access to a simple random sample of 1100 of Gru's upcoming schemes. Find the probability that... (Answers should be to four places after the decimal, using chart method, do NOT use the continuity correction): ...less than 101 schemes will succeed:    ...more than 95 schemes will succeed: ...between 95 and 101 schemes will succeed:   ...less than 8.5% of schemes will succeed: ...more than 9.5% of schemes...
Gru's schemes have a/an 9% chance of succeeding. An agent of the Anti-Villain League obtains access...
Gru's schemes have a/an 9% chance of succeeding. An agent of the Anti-Villain League obtains access to a simple random sample of 1100 of Gru's upcoming schemes. Find the probability that... (Answers should be to four places after the decimal, using chart method, do NOT use the continuity correction): ...between 95 and 101 schemes will succeed: ...less than 8.5% of schemes will succeed: ...more than 9.5% of schemes will succeed: ...between 8.5% and 9.5% of schemes will succeed:
Gru's schemes have a/an 11% chance of succeeding. An agent of the Anti-Villain League obtains access...
Gru's schemes have a/an 11% chance of succeeding. An agent of the Anti-Villain League obtains access to a simple random sample of 1100 of Gru's upcoming schemes. Find the probability that... (Answers should be to four places after the decimal, using chart method, do NOT use the continuity correction): ...less than 101 schemes will succeed: ...more than 95 schemes will succeed: ...between 95 and 101 schemes will succeed: ...less than 8.5% of schemes will succeed: ...more than 9.5% of schemes...
Gru's schemes have a 9% chance of succeeding. An agent of the Anti-Villain League obtains access...
Gru's schemes have a 9% chance of succeeding. An agent of the Anti-Villain League obtains access to a simple random sample of 1100 of Gru's upcoming schemes. Find the probability that... (Answers should be to four places after the decimal, using chart method, do NOT use the continuity correction): ...less than 101 schemes will succeed: ...more than 95 schemes will succeed: ...between 95 and 101 schemes will succeed: ...less than 8.5% of schemes will succeed: ...more than 9.5% of schemes...
Suppose the indifference curves of a perfect substitutes agent have a slope of -9/7. Good x...
Suppose the indifference curves of a perfect substitutes agent have a slope of -9/7. Good x is the numéraire. What would ?? need to be in order to create the “degenerate case” (whereby the agent is indifferent between everything on his budget line)?
You have access two 7-segment decoder outputs from an existing circuit. These outputs show the numbers...
You have access two 7-segment decoder outputs from an existing circuit. These outputs show the numbers 00 through 15. Build a circuit to convert the two 7-segment displays, which display decimal, to one 7- segment display, which displays the correct hexadecimal number.   
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT