Question

In: Other

Questions: The densities of ice and water at 0 °C are 0.9168 and 0.9998 g cm–3,respectively....

Questions:

  1. The densities of ice and water at 0 °C are 0.9168 and 0.9998 g cm–3,respectively. If ∆H for the fusion process at atmospheric pressure is 6.025 kJmol–1,

    1. What is ∆U?

    2. How much work is done on the system?

  2. For each of the following processes, state which of the quantities ∆U, ∆H, and ∆S are equal to zero. Explain with logical reasoning.

    1. Isothermal reversible expansion of an ideal gas.

    2. Adiabatic expansion of an ideal gas through a throttling valve.

    3. Vaporization of liquid water at 80 °C and 1 bar pressure.

    4. Reaction between H2SO4 and NaOH in dilute aqueous solution at constant temperature and pressure.

Solutions

Expert Solution

Work is done for that

For isothermal reversible expansion ∆U and ∆H will be 0 as they both depend on temperature change and since temperature change is 0 they are 0 too . ∆S will not be 0 as pressure change will accompany.

For adiabatic expansion through throttling valve, when in throttling valve enthalpy is const hence ∆H is 0. ∆S will also be 0 as Q/T will be 0 as Jo heat goes out .

For vaporisation of water none will be 0 as it is no longer a ideal gas case it involves phanse change from liquid to vapor. Ofcourse ∆T is 0 but ∆V isn't.

In that reaction ∆S is not zero as when reaction happens disorderness will increase in the system as more products r formed hence not zero,also ∆U and ∆H will not be 0 as enthalpy of formation of products and reactants after addition isn't 0 means heat will releases or will be sucked during reaction hence both of those values not zero

Please let me know if you need anything else from me please

Upvote if helpful

Stay home stay safe

Have a great day


Related Solutions

A 190 g piece of ice at 0°C is placed in 400 g of water at...
A 190 g piece of ice at 0°C is placed in 400 g of water at 24°C. The system is in a container of negligible heat capacity and is insulated from its surroundings. (a) What is the final equilibrium temperature of the system? °C (b) How much of the ice melts? g
100 g of solid ice at 0°C is added to 500 g of liquid water at...
100 g of solid ice at 0°C is added to 500 g of liquid water at 90°C. What is the final temperature? What is initial water temperature is required so that 10 g of ice remain once equilibrium has been reached?
a) A(n) 85-g ice cube at 0°C is placed in 920 g of water at 20°C....
a) A(n) 85-g ice cube at 0°C is placed in 920 g of water at 20°C. What is the final temperature of the mixture? b) A 103-g cube of ice at 0°C is dropped into 1.0 kg of water that was originally at 87°C. What is the final temperature of the water after the ice has melted? c) An aluminum cup contains 225 g of water and a 40-g copper stirrer, all at 27°C. A 432-g sample of silver at...
A 116-g cube of ice at 0 ∘∘C is dropped into 1.26 kg of water that...
A 116-g cube of ice at 0 ∘∘C is dropped into 1.26 kg of water that was originally 84.1∘C. What is the final temperature of the water after the ice melts and the water comes to thermal equilibrium? This problem requires a lot of algebra. You will make fewer errors if you solve for the answer using symbols and then plug in the numbers. The specific heat of water and the latent heat of fusion for water are given in...
A 50·g ice cube (at 0°C) is placed in an insulated cup with 250·g of water...
A 50·g ice cube (at 0°C) is placed in an insulated cup with 250·g of water which is at 46°C. The latent heat of fusion for ice is 80·cal/g and the specific heat of water is 1.0·cal/g/°C. (a) How much heat will the ice have to absorb from the water to completely melt (and turn into 0°C water)? ___ cal. (b) Find the temperature of the 250·g of water initially at 46°C after it loses the heat required to melt...
0.7 kg of ice at 0 ◦C and 3 kg of water at Ti are brought...
0.7 kg of ice at 0 ◦C and 3 kg of water at Ti are brought into thermal contact in an iso- lated container. All the ice melts, and the mixture reaches an equilibrium temperature of 10 ◦C. (a) (5 points) Determine the initial temperature Ti of the liquid water. (b) (1 point) Determine the entropy change ∆S_melt associated with this amount of ice melting. (c) (3 points) Determine the entropy change ∆S_coolwater associated with the decreasing temperature of the...
Recall that at 4°C, water has a density of 1.0000 g cm-3.  However, at 20°C, water has...
Recall that at 4°C, water has a density of 1.0000 g cm-3.  However, at 20°C, water has a density of 0.9982 g cm-3.   A student is using a balance to determine the difference between the amount of water transferred using a volume from a 10 mL volumetric pipette compared to a 10 mL in a 50 mL graduated cylinder.  To do this, the student measures the mass of a beaker and then adds water from the volumetric pipette.  The student records both measurements...
100 g of ice at -20°C are mixed with 250 g of water at 20°C in...
100 g of ice at -20°C are mixed with 250 g of water at 20°C in an insulated calorimeter. What is the final temperature of the system? How many grams of liquid water and how many grams of ice will you find after the system equilibrates? find T in degrees C; m of solid (in grams); m of liquid (in grams) T=____ ms=____ mliq=____
It is well known that water freezes at 0°C at atmospheric pressure. The mixture of liquid water and ice at 0°C is said to be
It is well known that water freezes at 0°C at atmospheric pressure. The mixture of liquid water and ice at 0°C is said to be at stable equilibrium since it cannot undergo any changes when it is isolated from its surroundings. However, when water is free of impurities and the inner surfaces of the container are smooth, the temperature of water can be lowered to 22°C or even lower without any formation of ice at atmospheric pressure. But at that...
If 200 g of ice at 0°C and 50 g of steam at 100°C interact thermally...
If 200 g of ice at 0°C and 50 g of steam at 100°C interact thermally in a well-insulated container. The final state of the system will be; ( is loved it and got Tf= 64C ) ( so please choose an answer from the following multiple choices ) (a) A water steam mixture at 100°C (b) Water at a temperature between 0°C and 50°C (c) 0.089 kg (d) 0.12 kg (e) A ice-water mixture at 0°C
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT