In: Statistics and Probability
You may need to use the appropriate technology to answer this question.
Scores in the first and fourth (final) rounds for a sample of 20 golfers who competed in golf tournaments are shown in the following table.
| Player | First Round  | 
Final Round  | 
|---|---|---|
| Golfer 1 | 70 | 72 | 
| Golfer 2 | 71 | 72 | 
| Golfer 3 | 70 | 73 | 
| Golfer 4 | 72 | 71 | 
| Golfer 5 | 70 | 69 | 
| Golfer 6 | 67 | 67 | 
| Golfer 7 | 71 | 67 | 
| Golfer 8 | 68 | 74 | 
| Golfer 9 | 67 | 72 | 
| Golfer 10 | 70 | 69 | 
| Player | First Round  | 
Final Round  | 
|---|---|---|
| Golfer 11 | 72 | 72 | 
| Golfer 12 | 72 | 70 | 
| Golfer 13 | 70 | 73 | 
| Golfer 14 | 70 | 75 | 
| Golfer 15 | 68 | 70 | 
| Golfer 16 | 68 | 65 | 
| Golfer 17 | 71 | 70 | 
| Golfer 18 | 70 | 68 | 
| Golfer 19 | 69 | 68 | 
| Golfer 20 | 67 | 71 | 
Calculate the value of the test statistic. (Round your answer to three decimal places.)
=
Calculate the p-value. (Round your answer to four decimal places.)
p-value =
(b)
What is the point estimate of the difference between the two population means? (Use mean score first round − mean score fourth round.)
=
(c)
What is the margin of error for a 90% confidence interval estimate for the difference between the population means? (Round your answer to two decimal places.)
=
| Sample #1 | Sample #2 | difference , Di =sample1-sample2 | (Di - Dbar)² | 
| 70 | 72 | -2 | 1.56 | 
| 71 | 72 | -1 | 0.06 | 
| 70 | 73 | -3 | 5.06 | 
| 72 | 71 | 1 | 3.06 | 
| 70 | 69 | 1 | 3.06 | 
| 67 | 67 | 0 | 0.56 | 
| 71 | 67 | 4 | 22.56 | 
| 68 | 74 | -6 | 27.56 | 
| 67 | 72 | -5 | 18.06 | 
| 70 | 69 | 1 | 3.06 | 
| 72 | 72 | 0 | 0.56 | 
| 72 | 70 | 2 | 7.56 | 
| 70 | 73 | -3 | 5.06 | 
| 70 | 75 | -5 | 18.06 | 
| 68 | 70 | -2 | 1.56 | 
| 68 | 65 | 3 | 14.06 | 
| 71 | 70 | 1 | 3.06 | 
| 70 | 68 | 2 | 7.56 | 
| 69 | 68 | 1 | 3.06 | 
| 67 | 71 | -4 | 10.56 | 
| sample 1 | sample 2 | Di | (Di - Dbar)² | |
| sum = | 1393 | 1408 | -15 | 155.750 | 
mean of difference ,    D̅ =ΣDi / n =  
-0.750
std dev of difference , Sd =    √ [ (Di-Dbar)²/(n-1) =
   2.863
a)
Level of Significance ,    α =   
0.05          
       
          
           
   
sample size ,    n =    20  
           
   
          
           
   
  
  
     
std error , SE = Sd / √n =    2.8631   /
√   20   =   0.6402  
   
          
           
   
t-statistic = (D̅ - µd)/SE = (   -0.7500  
-   0   ) /    0.6402  
=   -1.171
          
           
   
Degree of freedom, DF=   n - 1 =   
19          
       
  
p-value =       0.2559 [excel
function: =t.dist.2t(t-stat,df) ]       
       
b)
mean of difference , D̅ =ΣDi / n = -0.75
c)
Level of Significance ,    α =    0.1
sample size ,    n =    20  
       
Degree of freedom, DF=   n - 1 =   
19   and α =    0.1  
t-critical value =    t α/2,df =   
1.7291   [excel function: =t.inv.2t(α/2,df) ]  
   
          
       
std dev of difference , Sd =    √ [ (Di-Dbar)²/(n-1) =
   2.8631      
   
          
       
std error , SE = Sd / √n =    2.8631   /
√   20   =   0.6402
margin of error, E = t*SE =    1.7291  
*   0.6402   =   1.1070
          
       
mean of difference ,    D̅ =  
-0.750          
confidence interval is       
           
Interval Lower Limit= D̅ - E =   -0.750  
-   1.1070   =   -1.8570
Interval Upper Limit= D̅ + E =   -0.750  
+   1.1070   =   0.3570
          
       
so, confidence interval is (   -1.86 < Dbar
<   0.36 )