Question

In: Finance

Mr. Mohammed has an investment which has a nominal interest rate of 16% p.a. required: Compute...

Mr. Mohammed has an investment which has a nominal interest rate of 16% p.a. required:

  1. Compute the effective annual interest rate if interest is received:
    1. Semi annually
    2. Quarterly
    3. After every four months
    4. Monthly
    5. Weekly
  2. The amount of money invested is Sh. 100,000. It is invested for over 4 years. Compute the future value of this investment in relation to cases (i) to (v) in (a) above.

Solutions

Expert Solution

Part A:

Effective Annual Rate = ( 1 + r ) ^ n - 1
r = Int Rate per period
n = No.of periods per anum

1)

Particulars Amount
Ret period 8.0000%
No. of periods       2.0000

EAR = [ ( 1 + r ) ^ n ] - 1
= [ ( 1 + 0.08 ) ^ 2 ] - 1
= [ ( 1.08 ) ^ 2 ] - 1
= [ 1.1664 ] - 1
= 0.1664
I.e EAR is 16.64 %

2)

Particulars Amount
Ret period 4.0000%
No. of periods       4.0000

EAR = [ ( 1 + r ) ^ n ] - 1
= [ ( 1 + 0.04 ) ^ 4 ] - 1
= [ ( 1.04 ) ^ 4 ] - 1
= [ 1.1699 ] - 1
= 0.16986
I.e EAR is 16.986 %

3)

Particulars Amount
Ret period 5.3333%
No. of periods       3.0000

EAR = [ ( 1 + r ) ^ n ] - 1
= [ ( 1 + 0.053333 ) ^ 3 ] - 1
= [ ( 1.053333 ) ^ 3 ] - 1
= [ 1.1687 ] - 1
= 0.16869
I.e EAR is 16.869 %

4)

Particulars Amount
Ret period 1.3333%
No. of periods    12.0000

EAR = [ ( 1 + r ) ^ n ] - 1
= [ ( 1 + 0.013333 ) ^ 12 ] - 1
= [ ( 1.013333 ) ^ 12 ] - 1
= [ 1.1723 ] - 1
= 0.17227
I.e EAR is 17.227 %

5)

Particulars Amount
Ret period 0.3077%
No. of periods    52.0000

EAR = [ ( 1 + r ) ^ n ] - 1
= [ ( 1 + 0.003077 ) ^ 52 ] - 1
= [ ( 1.003077 ) ^ 52 ] - 1
= [ 1.1732 ] - 1
= 0.17322
I.e EAR is 17.322 %

Part B:

Future Value:

Future Value is Value of current asset at future date grown at given int rate or growth rate.

FV = PV (1+r)^n
Where r is Int rate per period
n - No. of periods

1)

Particulars Amount
Present Value $       100,000.00
Int Rate 8.0000%
Periods 8

Future Value = Present Value * ( 1 + r )^n
= $ 100000 ( 1 + 0.08) ^ 8
= $ 100000 ( 1.08 ^ 8)
= $ 100000 * 1.8509
= $ 185093.02

2)

Particulars Amount
Present Value $       100,000.00
Int Rate 4.0000%
Periods 16

Future Value = Present Value * ( 1 + r )^n
= $ 100000 ( 1 + 0.04) ^ 16
= $ 100000 ( 1.04 ^ 16)
= $ 100000 * 1.873
= $ 187298.12

3)

Particulars Amount
Present Value $       100,000.00
Int Rate 5.3333%
Periods 12


Future Value = Present Value * ( 1 + r )^n
= $ 100000 ( 1 + 0.053333) ^ 12
= $ 100000 ( 1.053333 ^ 12)
= $ 100000 * 1.8655
= $ 186547.72

4)

Particulars Amount
Present Value $       100,000.00
Int Rate 1.3333%
Periods 48

Future Value = Present Value * ( 1 + r )^n
= $ 100000 ( 1 + 0.013333) ^ 48
= $ 100000 ( 1.013333 ^ 48)
= $ 100000 * 1.8885
= $ 188847.74

5)

Particulars Amount
Present Value $       100,000.00
Int Rate 0.3077%
Periods 208

Future Value = Present Value * ( 1 + r )^n
= $ 100000 ( 1 + 0.003077) ^ 208
= $ 100000 ( 1.003077 ^ 208)
= $ 100000 * 1.8946
= $ 189461.83


Related Solutions

Given a nominal interest rate of 6.5% compounded semi-annually, compute: a) The equivalent nominal rate of...
Given a nominal interest rate of 6.5% compounded semi-annually, compute: a) The equivalent nominal rate of discount compounded quarterly b) The equivalent constant force of interest
Compute the nominal annual rate of interest (compounded monthly) at which $250.00 deposited at the end...
Compute the nominal annual rate of interest (compounded monthly) at which $250.00 deposited at the end of each month for ten years will amount to $30 000.00.
(a) Which interest rate (nominal or real) affects investment? Which affects money demand?
Answer the following questions about interest rates and present values: (a) Which interest rate (nominal or real) affects investment? Which affects money demand? How do changes in the relevant interest rate affect these variables? (b) A restaurant is considering remodeling. It estimates the remodel will cost $6,000 and as a result revenues will rise by $3,000 the first year, $2,500 the second year, $1,500 the third year and have no effect in subsequent years. If the interest rate is 5%,...
Calculate the nominal rate of interest if a $20,000 investment has experienced 40% increase in value...
Calculate the nominal rate of interest if a $20,000 investment has experienced 40% increase in value after 6 years when interest compounds monthly.
The nominal exchange rate is the nominal interest rate in one country divided by the nominal interest...
The nominal exchange rate is the nominal interest rate in one country divided by the nominal interest rate in the other country. the ratio of a foreign country's interest rate to the domestic interest rate. rate at which a person can trade the currency of one country for another. the real exchange rate minus the inflation rate.
. Consider a firm for which the nominal required rate of return is 8%. the rate...
. Consider a firm for which the nominal required rate of return is 8%. the rate of inflation is 3%. compute the P\E ratio of the firm under the following situations: i. the firm has a full inflation flow- through. ii. The firm can pass only 40% of inflation through its earnings. iii. the firm cannot pass any inflation through its earnings. what pattern do you observe from you answers to items (i) through (iii)?
Which investment has a higher NPV (at an interest rate of 10%): a) An investment that...
Which investment has a higher NPV (at an interest rate of 10%): a) An investment that costs $500 today and returns $100 / year for the next 6 years b) an investment that costs %600 today and returns $90 per year for the next 7 years
Define the nominal interest rate. How is the nominal interest related to the real interest rate?...
Define the nominal interest rate. How is the nominal interest related to the real interest rate? Why can we think of 1+ rt , where rt is the real interest rate, as the relative price of consumption today in terms of consumption in the future?
nominal interest rate
nominal interest rate
(a) Investment A for $100,000 is invested at a nominal rate of interest, j, convertible semiannually....
(a) Investment A for $100,000 is invested at a nominal rate of interest, j, convertible semiannually. After 4 years, it accumulates to 214,358.88. (b) Investment B for $100,000 is invested at a nominal rate of discount, k, convertible quarterly. After two years, it accumulates to 232,305.73. 2 (c) Investment C for $100,000 is invested at an annual effective rate of interest equal to j in year one and an annual effective rate of discount equal to k in year two....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT