Question

In: Physics

A long straight wire lies on a horizontal table and carries a current of 0.48 μA....

A long straight wire lies on a horizontal table and carries a current of 0.48 μA. A proton with charge qp = 1.60218 × 10^−19 C and mass mp = 1.6726 × 10^−27 kg moves parallel to the wire (opposite the current) with a constant velocity of 12200 m/s at a distance d above the wire. The acceleration of gravity is 9.8 m/s^2.

Determine this distance of d. You may ignore the magnetic field due to the Earth.

Answer in units of cm.

Solutions

Expert Solution

Magnetic force on the proton due to the current wire is

are the unit vectors along positive X( right), positive Y( up) and positive Z ( out of the plane) respectively.

The current in the wire is towards right (say) along positive X direction, then magnetic field at proton due to current wire is

As the proton is moving in opposite direction to current,

Where

That is direction of magnetic force on the proton is upwards .

Gravitational force on proton is

Net force on proton is zero,


Related Solutions

A long, straight wire lies on a horizontal table in the xy-plane and carries a current...
A long, straight wire lies on a horizontal table in the xy-plane and carries a current of 2.50 microA in the positive x-direction along the x-axis. A proton is traveling in the negative x-direction at speed 3.1 x 104 m/s a distance d above the wire. a) If you consider the moving proton as a "current", in what direction is the magnetic field produced by the moving proton at the location of the long straight wire? b) In what direction...
A long straight wire lies on a horizontal table and carries an ever-increasing current toward the...
A long straight wire lies on a horizontal table and carries an ever-increasing current toward the north. Two coils of wire lie flat on the table, on on either side of the wire. When viewed from above, the direction of the induced current is clockwise for the west coil counterclockwise for the west coil There is no induced current in the west coil clockwise for the east coil counterclockwise for the east coil There is no induced current in the...
A long, horizontal wire AB rests on the surface of a table and carries a current...
A long, horizontal wire AB rests on the surface of a table and carries a current I. Horizontal wire CD is vertically above wire AB and is free to slide up and down on the two vertical metal guides C and D (the figure ). Wire CD is connected through the sliding contacts to another wire that also carries a current I, opposite in direction to the current in wire AB. The mass per unit length of the wire CD...
A long, straight wire carrying a current I1 is placed on a horizontal table in front...
A long, straight wire carrying a current I1 is placed on a horizontal table in front of you and the direction of the current points +x axis. The magnetic field produced by the current I1 at a point 5 cm above the wire is 0.2 T. A second parallel wire carrying a current I2 = 3I1 is placed 10 cm above the first wire and the direction of the current also points +x axis. What is the magnitude of the...
A long horizontal wire carries a current of 48 A. A second wire, made of 2.7...
A long horizontal wire carries a current of 48 A. A second wire, made of 2.7 mm diameter copper wire and parallel to the first, is kept in suspension magnetically 15 cm below. Determine the magnitude of the current in the lower wire. Determine the direction of the current in the lower wire. IS IT IN STABLE EQUILIBRIUM?
A straight wire carries a 12-A current eastward and a second straight wire carries a 14-A...
A straight wire carries a 12-A current eastward and a second straight wire carries a 14-A current westward. The wires are separated by a distance of 42 cm. The force on a 6.4 m length of one of the wires is.. 8.0 × 10-5 N. 8.0 × 10-7 N. 5.1 × 10-6 N. 5.1 × 10-4 N. not possible to determine with the information given.
A straight wire lying in a horizontal plane carries a current of 20 A. (Given, μ0...
A straight wire lying in a horizontal plane carries a current of 20 A. (Given, μ0 = 4π × 10-7 Tm/A) (a) Find the magnitude of the magnetic field at a perpendicular distance of 35 cm from it on the plane. How do you know the direction of the magnetic field? (b) If the length of the current carrying straight wire is 0.75m and it makes an angle of 60° with the Earth’s magnetic field 6× 10-5 T, find the...
A straight wire lying in a horizontal plane carries a current of 20 A. (Given, μ0...
A straight wire lying in a horizontal plane carries a current of 20 A. (Given, μ0 = 4π × 10-7 Tm/A) (a) Find the magnitude of the magnetic field at a perpendicular distance of 35 cm from it on the plane. How do you know the direction of the magnetic field? (b) If the length of the current carrying straight wire is 0.75m and it makes an angle of 60° with the Earth’s magnetic field 6× 10-5 T, find the...
A long straight wire carries a current of 8 A. a) In what direction does the...
A long straight wire carries a current of 8 A. a) In what direction does the produced magnetic field point in the neighborhood of the wire? b) Use Amp`ere’s Law to find what is the magnitude of ~ B at 5 mm from the wire? c) A second current carrying wire is placed parallel 8 cm away and experiences an attractive force per unit length of 50 µN/m. What is the current (and its direction) in the second wire? d)...
A very long, straight wire carries a current of 14.1 A out of the screen. An...
A very long, straight wire carries a current of 14.1 A out of the screen. An electron outside the wire is 1.59 cm to the right of the central axis of the wire and is moving with a speed of 5.81×106 m/s. Find the magnitude of the magnetic force on the electron if it is moving directly away from the wire (i.e., rightward). First, find the magnetic field due to the current at the electron's location. Then, calculate the force...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT