In: Statistics and Probability
There are 1254 machinery rebuilding and repairing companies in the United States. A tool manufacturer wishes to survey a simple random sample of these firms to find out what proportion of them are interested in a new tool design. Assume that we’re dealing with a finite population in the following sub-questions.
(a) If the tool manufacturer would like to be 95% confident that the sample proportion is within 0.01 of the actual population proportion, how many machinery rebuilding and repairing companies should be included in the sample (Hint: use the conservative value of p for when p is not given)?
b) Suppose the tool manufacturer has carried out the study, using the sample size determined in part (a), and 39.0% of the machinery rebuilding and repairing companies are interested in the new tool design. Which of the following 95% confidence interval for the population percentage? Show work.
A. CI = (0.3710, 0.4091)
B. CI = (0.3613, 0.4187)
C. CI = (0.3572, 0.4228)
D. CI = (0.3338, 0.4462)
(c)Which of the following is the best interpretation of the confidence interval from the previous part?
A. After performing a large number of samples, we expect to arrive at the same confidence interval as above 95% of the time.
B. We are 95% confident that the unknown population parameter, π, falls in this interval.
C. 95% of all the data values in the population fall within the interval.
D. There is a 5% margin of error in our statistical analysis.
a)
without prior estimate, let    sample proportion
,   p̂ =    0.5      
           
       
   sampling error ,    E =  
0.01          
           
   
   Confidence Level ,   CL=  
0.95          
           
   
          
           
           
   
   alpha =   1-CL =  
0.05          
           
   
   Z value =    Zα/2 =   
1.960   [excel formula =normsinv(α/2)]  
           
       
          
           
           
   
   Sample Size,n =   p̂ * (1-p̂) /((E / Z)² +
p̂(1-p̂)/N) = 0.50   * ( 1 -   0.50  
)/((0.01/1.96)²+0.5*0.5/1254) ≈1109.17
          
           
           
   
          
           
           
   
   so,Sample Size required=
1110
b)
Level of Significance,   α =   
0.05          
Sample Size,   n =    1110  
       
          
       
Sample Proportion ,    p̂ = 0.3900  
       
z -value =   Zα/2 =    1.960   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0146          
margin of error , E = Z*SE =    1.960  
*   0.0146   =   0.0287
          
       
95%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.390  
-   0.0287   =   0.361
Interval Upper Limit = p̂ + E =   0.390  
+   0.0287   =   0.419
          
       
95%   confidence interval is (  
0.3613   < p <    0.4187  
)
c)
B. We are 95% confident that the unknown population parameter, π, falls in this interval.