Question

In: Physics

Consider a Rankine cycle engine. The engine will use 0.46 kilomoles of water vapor (treated as...

Consider a Rankine cycle engine. The engine will use 0.46 kilomoles of water vapor (treated as a diatomic gas) that is initially at 1.5 atm in a 10 m3 vessel. Then, water vapor is compressed isobarically to 1/10th of its original volume. Next, the water vapor is isochorically pressurized to 5 atm. The water is then isobarically expanded to a volume of 4.23 m3. Finally, the water vapor is allowed to adiabatically expand back to its original pressure and volume. (R = 8314 J/kilomole (K); 1 atm = 101325 Pa)

a) Draw the P-V diagram for the Rankine cycle

b) Calculate the work done by the engine for one complete cycle

c) Calculate the heat absorbed by the engine

d) Calculate the efficiency of the heat engine.

e) Compare this efficiency to a Carnot Cycle operating between the two most extreme temperatures achieved by the engine.

Solutions

Expert Solution


Related Solutions

Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at...
Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa. The mass flow rate of steam entering the turbine is 50 kg/s. Determine: (a) the net power developed, in kW. (b) the rate of heat transfer to the steam passing through the boiler, in kW. (c) the percent thermal efficiency. (d) the mass flow rate of condenser cooling water, in kg/s, if the cooling water...
Consider an ideal Rankine cycle using water with a high-pressure side of the cycle at a...
Consider an ideal Rankine cycle using water with a high-pressure side of the cycle at a supercritical pressure. Such a cycle has a potential advantage of minimizing local temperature differences between the fluids in the steam generator, such as the instance in which the high-temperature energy source is the hot exhaust gas from a gas- turbine engine. Calculate the thermal efficiency of the cycle if the state entering the turbine is 30 MPa, 550°C, and the condenser pressure is 5...
Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa.
 Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa. Saturated liquid exits the condenser at P = 0.008 MPa. The net power output of the cycle is 100 MW. determine the thermal efficiency of the cycle
Consider the Rankine power cycle using vapor and liquid. a: Explain what kinds of problems the...
Consider the Rankine power cycle using vapor and liquid. a: Explain what kinds of problems the Carnot Vapor Cycle has. b: Draw a T-s diagram for the ideal Rankine cycle and label each process explicitly. c: There is a method to superheat steam to high temperature in order to improve the efficiency of the ideal Rankine cycle. Explain its advantages and disadvantages explicitly. d: Name the gas power cycle which uses the same four processes in its cycle and draw...
Another type of external combustion steam engine in the Rankine cycle engine. You are told a...
Another type of external combustion steam engine in the Rankine cycle engine. You are told a Rankine engine will be operated in the following manner. The engine will use 0.46 kilomoles of water vapor. The water vapor is initially at 1.5 atm in a 10 m3 vessel. The water vapor is compressed isobarically to 1/10th of its original volume. The water vapor is then isochorically pressurized to 5 atm. The water is then isobarically expanded to a volume of 4.23...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The net power...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The net power of power plant is 220-MW. At the turbine inlet, steam is at 9 MPa and 560°C. The condenser pressure is 20 kPa. Determine the following values.   The temperature at the pump inlet. °CThe specific enthalpy at the pump inlet. kJ/kgThe specific volume at the pump inlet. m3/kgThe pump work. kJ/kgThe temperature at pump exit. °CThe specific entropy at turbine inlet. kJ/kg·KThe quality of steam...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure is 6100 kPa and the condenser pressure is 30 kPa. At the turbine inlet, steam is at 480°C. The isentropic efficiency of the turbine is 92 percent. The pump losses are negligible and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the following values. The temperature at the pump inlet....
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C a) Calculate the total heat addition, net work of the cycle, heat extraction through condenser, and thermal efficiency of this ideal Rankine cycle with reheat. [25] b) Calculate the same quantities assuming that the pump and each turbine...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C a) For a pressure of 7 bar right after the first stage turbine in the ideal Rankine cycle, create two plots: thermal efficiency as a function of the reheat temperature from 200 °C to 500 °C; and the...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa...
In an ideal Rankine cycle with reheat, superheated steam vapor enters the turbine at 10 MPa and 480 °C, while the condenser pressure is 6 kPa. Steam expands through the first-stage turbine to 0.7 MPa and then is reheated to 480 °C. Calculate the total heat addition, net work of the cycle, heat extraction through condenser, and thermal efficiency of this ideal Rankine cycle with reheat  
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT