Question

In: Physics

8). 2 charges, 12.33 µC each, are located at two vertices B & C of an...

8). 2 charges, 12.33 µC each, are located at two vertices B & C of an equilateral triangle ABC with sides 2 cm each. Another charge q is located at point A. Calculate q in micro Coulomb so that net POTENTIAL at the mid point of BC will be ZERO.

9). Three charges, + 22 uC, - 22 uC and + 22 uC are placed at A (0,5cm), B (5cm,0), C(-5cm,0). Calculate the potential energy of the whole system of charges.

10). Two charges, one is at A with - 30.11 nC and other is at B with +9* 30.11 nC are seperated by 1 m. Find the distance AC in cm for which electric POTENTIAL at point C is zero. Point C is located on line AB.

Solutions

Expert Solution


Related Solutions

3 charges, 8 µC each, are located on three vertices A, B, C of an equilateral triangle with sides 1 cm each.
  9). 3 charges, 8 µC each, are located on three vertices A, B, C of an equilateral triangle with sides 1 cm each. Another charge q is located at the mid point D of the side BC. Calculate q in micro Coulomb so that net force on the charge at A due to the charges at B, C and D is zero. 10). In a right angle triangle ABC, angle ABC is 90 Degree, AB = 2 m, and...
1. There are 2 charges (3 µC and 4 µC) located at (-4 cm, 0) and...
1. There are 2 charges (3 µC and 4 µC) located at (-4 cm, 0) and (4 cm, 0), respectively. A. Determine the magnitude and direction of the electric field at (8 cm, 0). B. Determine the magnitude and direction of the electric field at (0, 8 cm). 2. Look back to problem#1. Let the charges start infinitely far away and infinitely far apart. They are placed at (6 cm, 0) and (0, 3 cm), respectively, from their initial infinite...
Two point charges, A and B. Charge A is located at the origin and Charge B...
Two point charges, A and B. Charge A is located at the origin and Charge B is on the x axis at x=40.0 cm. a) Let the charge of A is +3Q and the charge of B is +Q. If charge B exerts 50.0N on A, find the magnitudes of Q in Coulomb. b) If A has +2.00 x10^(-6)C and B has -3.00x10^(-6)C, find the possible locations along the x-axis with zero electric potential. c) Let A has +2.00x10(-6)C and...
Question 5. The 2.50 µc point charges are located on the x-axis. One is at x...
Question 5. The 2.50 µc point charges are located on the x-axis. One is at x = 1.00 m, and the other is at x = -1.00 m. Determine the electric field on the y-axis at y = 0.500 m. Answer in Newtons per Coulombs. Question 6. The 2.50 µc point charges are located on the x-axis. One is at x = 1.00 m, and the other is at x = -1.00 m. Calculate the electric force on a -3.50...
1. A 2 µC charge is located 0.1 mm from a - 5 µC charge. (a)...
1. A 2 µC charge is located 0.1 mm from a - 5 µC charge. (a) What is the magnitude of electric force between the charges? (b) Is the force repulsive, or attractive? 2. The deoxyribonucleic acid (DNA) is 2.17 µm long helical molecule. The ends of the molecule become ionized, with one end being negatively charged and the other end being positively charged. Upon becoming charged, the molecule acts like a spring, and compresses by about 1% of its...
Two charges, +5 µC and +17 µC, are fixed 1 m apart, with the second one...
Two charges, +5 µC and +17 µC, are fixed 1 m apart, with the second one to the right. Find the magnitude and direction of the net force (in N) on a −7 nC charge when placed at the following locations. (a) halfway between the two magnitude N direction (b) half a meter to the left of the +5 µC charge magnitude N direction (c) half a meter above the +17 µC charge in a direction perpendicular to the line...
Two charges, +9 µC and +15 µC, are fixed 1 m apart, with the second one...
Two charges, +9 µC and +15 µC, are fixed 1 m apart, with the second one to the right. Find the magnitude and direction of the net force (in N) on a −8 nC charge when placed at the following locations. (a) halfway between the two magnitude ______________ N (b) half a meter to the left of the +9 µC charge magnitude __________ N (c) half a meter above the +15 µC charge in a direction perpendicular to the line...
Four point charges of Q = 4πε0 C each are located at the corners of a...
Four point charges of Q = 4πε0 C each are located at the corners of a square 1 meter on a side. If the square is placed at the z = -1 plane and its center is on the z axis, find the electric field intensity E at: (i) the origin; (ii) at P1 (0, 0, -1); and (iii) at P1 (0, 0, 1).
Two positive charges, each of magnitude 8.4 x 10-6 C, are located a distance of 19...
Two positive charges, each of magnitude 8.4 x 10-6 C, are located a distance of 19 cm from each other. They are arranged along a horizontal line. (a) What is the magnitude of the force exerted on each charge? (b) What direction is the force from the right charge acting on the left charge? (c) What direction is the force from the left charge acting on the right charge?
3. Two charges with fixed positions are listed below: q1 = −4 µC at (−2 mm,...
3. Two charges with fixed positions are listed below: q1 = −4 µC at (−2 mm, 2 mm); q2 = −14 µC at (3 mm, 2 mm). (a) (5 points) Determine the electric potential at the origin. (b) (10 points) If an α-particle were placed at the origin, determine the electric force on the α-particle due to the fixed charges. Note: an α-particle is a helium nucleus, which is made of two protons and two neutrons. (c) (10 points) Where...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT