Question

In: Operations Management

AutoReports

AutoReports is a consumer magazine that reports on the cost of maintaining various types of automobiles. The magazine collected the data found in the file Dat9-16.xls on your data disk describing the annual maintenance cost of a certain type of luxury imported automobile along with the age of the car (in years).

a. Prepare a scatter plot of these data.

b. Let Y = Maintenance Cost and X = Age. Fit the following regression model to the data:

Ŷi = b0 + b1X1i

Plot the maintenance costs that are estimated by this model along with the actual costs in the sample. How well does this model fit the data?

c. Fit the following regression model to the data:

Ŷi = b0 + b1X1i + b2X2i

Where X2i = X21i. Plot the maintenance costs that are estimated by this model along with the actual costs in the sample. How well does this model fit the data?

d. Fit the following regression model to this data:

Ŷi = b0 + b1X1i + b2X2i + b3X3i

Where X2i = X21i and X3i = X31i. Plot the maintenance costs that are estimated by this model along with the actual costs in the sample. How well does this model fit the data?

Solutions

Expert Solution

Age Age^2 Age^3 Maintenance Cost Linear Quadratic Cubic
1 1 1 100 175.46512 214.51923 115.08052
2 4 16 375 296.15449 303.12843 342.28298
2 4 16 325 296.15449 303.12843 342.28298
3 9 81 455 416.84385 403.73283 466.38458
3 9 81 520 416.84385 403.73283 466.38458
4 16 256 485 537.53322 516.33242 528.03634
4 16 256 530 537.53322 516.33242 528.03634
5 25 625 595 658.22259 640.9272 584.14975
5 25 625 515 658.22259 640.9272 584.14975
6 36 1296 700 778.91196 777.51717 707.89667
6 36 1296 800 778.91196 777.51717 707.89667
7 49 2401 1000 899.60133 926.10234 988.70941
7 49 2401 950 899.60133 926.10234 988.70941

Scatter plot a

Part b, c, d

 

SUMMARY OUTPUT              
                 
Regression Statistics              
Multiple R 0.950898163              
R Square 0.904207317              
Adjusted R Square 0.895498891              
Standard Error 80.59932464              
Observations 13              
                 
ANOVA                
  df SS MS F Significance F      
Regression 1 674514.3145 674514.3145 103.8313176 6.12492E-07      
Residual 11 71458.76246 6496.251133          
Total 12 745973.0769            
                 
  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.000% Upper 95.000%
Intercept 54.77574751 54.87003772 0.998281572 0.339596592 -65.99245233 175.5439474 -65.99245233 175.5439474
X Variable 1 120.6893688 11.84417548 10.18976534 6.12492E-07 94.62050111 146.7582364 94.62050111 146.7582364

 

SUMMARY OUTPUT              
                 
Regression Statistics              
Multiple R 0.954326142              
R Square 0.910738385              
Adjusted R Square 0.892886062              
Standard Error 81.60071181              
Observations 13              
                 
ANOVA                
  df SS MS F Significance F      
Regression 2 679386.3152 339693.1576 51.01511908 5.66661E-06      
Residual 10 66586.76168 6658.676168          
Total 12 745973.0769            
                 
  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.000% Upper 95.000%
Intercept 137.9052198 111.9408347 1.231947395 0.246150736 -111.5145464 387.3249859 -111.5145464 387.3249859
X Variable 1 70.61641484 59.75431279 1.181779382 0.264633471 -62.5245141 203.7573438 -62.5245141 203.7573438
X Variable 2 5.997596154 7.011605803 0.855381253 0.412365513 -9.625237854 21.62043016 -9.625237854 21.62043016

 

SUMMARY OUTPUT              
                 
Regression Statistics              
Multiple R 0.98546528              
R Square 0.97114182              
Adjusted R Square 0.96152243              
Standard Error 48.9074227              
Observations 13              
                 
ANOVA                
  df SS MS F Significance F      
Regression 3 724445.6529 241481.8843 100.9566663 3.01162E-07      
Residual 9 21527.42398 2391.935998          
Total 12 745973.0769            
                 
  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.000% Upper 95.000%
Intercept -239.61344 109.8493378 -2.181291596 0.057054284 -488.110093 8.883218391 -488.110093 8.883218391
X Variable 1 422.504812 88.63291184 4.766906591 0.001019768 222.0030825 623.0065409 222.0030825 623.0065409
X Variable 2 -68.48837 17.66860142 -3.876275687 0.00375266 -108.4575538 -28.51918638 -108.4575538 -28.51918638
X Variable 3 0.67751741 0.156099976 4.34027877 0.001876701 0.324394463 1.030640357 0.324394463 1.030640357

 


Related Solutions

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT