In: Statistics and Probability
5 |
9 |
16 |
8 |
16 |
23 |
9 |
18 |
26 |
10 |
20 |
26 |
12 |
22 |
29 |
16 |
24 |
26 |
Quantitative data as all data values are numerical in hours.
Yes because hours of training affect the output per week of employees.
The independent variable is 5, 9 or 16 hours of training.
The dependent variable is output per week of employees.
r² | 0.903 | |||||
r | 0.950 | |||||
Std. Error | 1.140 | |||||
n | 5 | |||||
k | 1 | |||||
Dep. Var. | 9 | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 36.1000 | 1 | 36.1000 | 27.77 | .0133 | |
Residual | 3.9000 | 3 | 1.3000 | |||
Total | 40.0000 | 4 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=3) | p-value | 95% lower | 95% upper |
Intercept | 9.5500 | |||||
5 | 0.9500 | 0.1803 | 5.270 | .0133 | 0.3763 | 1.5237 |
r² | 0.200 | |||||
r | 0.447 | |||||
Std. Error | 2.191 | |||||
n | 5 | |||||
k | 1 | |||||
Dep. Var. | 16 | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 3.6000 | 1 | 3.6000 | 0.75 | .4502 | |
Residual | 14.4000 | 3 | 4.8000 | |||
Total | 18.0000 | 4 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=3) | p-value | 95% lower | 95% upper |
Intercept | 22.7000 | |||||
5 | 0.3000 | 0.3464 | 0.866 | .4502 | -0.8024 | 1.4024 |
r² | 0.450 | |||||
r | 0.671 | |||||
Std. Error | 1.817 | |||||
n | 5 | |||||
k | 1 | |||||
Dep. Var. | 16 | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 8.1000 | 1 | 8.1000 | 2.45 | .2152 | |
Residual | 9.9000 | 3 | 3.3000 | |||
Total | 18.0000 | 4 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=3) | p-value | 95% lower | 95% upper |
Intercept | 17.0000 | |||||
9 | 0.4500 | 0.2872 | 1.567 | .2152 | -0.4641 | 1.3641 |
From the results above, we can say that there is an impact of 5 & 16 hours of training on output.