In: Finance
Stocks A and B have the following probability distributions of expected future returns: PROBABILITY: 0.1, 0.2, 0.4, 0.2, 0.1 Stock A: 8%, 5,13, 21,29 Stock B. 36%, 0, 22, 25, 36. Calculate the expected rate of return, rB, for Stock B (rA = 12.50%.) Do not round intermediate calculations. Round your answer to two decimal places. Calculate the standard deviation of expected returns, ?A, for Stock A (?B = 19.68%.) Do not round intermediate calculations. Round your answer to two decimal places. Now calculate the coefficient of variation for Stock B. Round your answer to two decimal places.
Formula sheet
A1 | B | C | D | E | F | G | H | I | J | |||||
2 | Rate of Return if the state occurs | |||||||||||||
3 | Probability | Stock A | Stock B | |||||||||||
4 | 0.1 | -0.18 | 0.05 | |||||||||||
5 | 0.2 | -0.07 | 0.03 | |||||||||||
6 | 0.4 | 0.12 | 0.06 | |||||||||||
7 | 0.2 | 0.2 | 0.02 | |||||||||||
8 | 0.1 | 0.25 | -0.01 | |||||||||||
9 | ||||||||||||||
10 | 1) | |||||||||||||
11 | Calculation of Expected Return for each Stock: | |||||||||||||
12 | Expected return is given by following formula: | |||||||||||||
13 |
|
|||||||||||||
14 | ||||||||||||||
15 | ||||||||||||||
16 | ||||||||||||||
17 | ||||||||||||||
18 | Expected return of Stock A, rA | =Sum of product of probability and return in each state | ||||||||||||
19 | =SUMPRODUCT(C4:C8,D4:D8) | =SUMPRODUCT(C4:C8,D4:D8) | ||||||||||||
20 | ||||||||||||||
21 | Hence Expected return of Stock A is | =D19 | ||||||||||||
22 | ||||||||||||||
23 | Simillarly expected return for other funds can be calculated as follows: | |||||||||||||
24 | ||||||||||||||
25 | =D3 | =E3 | ||||||||||||
26 | Expected Return | =SUMPRODUCT($C$4:$C$8,D4:D8) | =SUMPRODUCT($C$4:$C$8,E4:E8) | |||||||||||
27 | ||||||||||||||
28 | 2) | |||||||||||||
29 | Variance and standard deviation of stocks can be calculated as follows: | |||||||||||||
30 | Variance and standard deviation of stocks can be calculated from following formula: | |||||||||||||
31 |
|
|||||||||||||
32 | ||||||||||||||
33 | ||||||||||||||
34 |
|
|||||||||||||
35 | ||||||||||||||
36 | ||||||||||||||
37 | ||||||||||||||
38 | ||||||||||||||
39 | Variance of Stock A, VarA | =Sum of product of probability and square of excces return in each state | ||||||||||||
40 | =SUMPRODUCT(C4:C8,(D4:D8-D26)^2) | =SUMPRODUCT(C4:C8,(D4:D8-D26)^2) | ||||||||||||
41 | ||||||||||||||
42 | Standard Deviation of Stock A is | =Sqrt (Variance of Stock A) | ||||||||||||
43 | =SQRT(D40) | =SQRT(D40) | ||||||||||||
44 | ||||||||||||||
45 | ||||||||||||||
46 | Simillarly Variance and Standard deviation of Stock B can be calculated as follows: | |||||||||||||
47 | ||||||||||||||
48 | =D25 | =E25 | ||||||||||||
49 | Expected Return | =D26 | =E26 | |||||||||||
50 | Variance | =SUMPRODUCT($C$4:$C$8,(D4:D8-D49)^2) | =SUMPRODUCT($C$4:$C$8,(E4:E8-E49)^2) | |||||||||||
51 | Standard Deviation | =SQRT(D50) | =SQRT(E50) | |||||||||||
52 | ||||||||||||||
53 | Coefficicent of variation can be calculated as: | |||||||||||||
54 | Coefficient of variation | =Standard Deviation / Expected Return | ||||||||||||
55 | ||||||||||||||
56 | =D48 | =E48 | ||||||||||||
57 | Expected Return | =D49 | =E49 | |||||||||||
58 | Variance | =D50 | =E50 | |||||||||||
59 | Standard Deviation | =D51 | =E51 | |||||||||||
60 | Coefficient of variation | =D59/D57 | =E59/E57 | =E59/E57 | ||||||||||
61 |