Question

In: Physics

I swung a pendulum and calculated kinetic and potential energy, however it failed to show conservation...

I swung a pendulum and calculated kinetic and potential energy, however it failed to show conservation of mechanical energy. A graph of mechanical energy showed sinusoidal curves. What could explain this? It seems as though it is not only friction or air resistance, as it is not a negative slope. Please help!

Solutions

Expert Solution

The motion of a pendulum is a classic example of mechanical energy conservation. A pendulum consists of a mass (known as a bob) attached by a string to a pivot point. As the pendulum moves it sweeps out a circular arc, moving back and forth in a periodic fashion. Neglecting air resistance (which would indeed be small for an aerodynamically shaped bob), there are only two forces acting upon the pendulum bob. One force is gravity. The force of gravity acts in a downward direction and does work upon the pendulum bob. However, gravity is an internal force (or conservative force) and thus does not serve to change the total amount of mechanical energy of the bob. The other force acting upon the bob is the force of tension. Tension is an external force and if it did do work upon the pendulum bob it would indeed serve to change the total mechanical energy of the bob. However, the force of tension does not do work since it always acts in a direction perpendicular to the motion of the bob. At all points in the trajectory of the pendulum bob, the angle between the force of tension and its direction of motion is 90 degrees. Thus, the force of tension does not do work upon the bob.

Since there are no external forces doing work, the total mechanical energy of the pendulum bob is conserved. The conservation of mechanical energy is demonstrated in the animation below. Observe the KE and PE bars of the bar chart; their sum is a constant value.

Observe that the falling motion of the bob is accompanied by an increase in speed. As the bob loses height and PE, it gains speed and KE; yet the total of the two forms of mechanical energy is conserved.


Related Solutions

Drive the formula of kinetic and potential energy of a pendulum.
Drive the formula of kinetic and potential energy of a pendulum.
2. Describe Kinetic Energy and Potential Energy. Describe the Law on Conservation of Mechanical Energy. If...
2. Describe Kinetic Energy and Potential Energy. Describe the Law on Conservation of Mechanical Energy. If an object that is thrown perpendicular to the ground by neglecting the friction is required to go up to 125 m height, what should be the initial velocity of the object? Take the acceleration of gravity 10 m / s and assume that the mass of the object does not change.
- In your own words, explain potential energy, kinetic energy, conservation of energy and examples in...
- In your own words, explain potential energy, kinetic energy, conservation of energy and examples in daily life. - In your own words, explain the definition of work in Physics. - In your own words, explain Hooke's Law and elastic potential energy.
Explain conservation of mechanical energy (including formula) in terms of potential and kinetic energy using an...
Explain conservation of mechanical energy (including formula) in terms of potential and kinetic energy using an example in your sport
3. a)What is kinetic energy? b) What is potential energy? c) What is the law of conservation of energy
3. a)What is kinetic energy? b) What is potential energy? c) What is the law of conservation of energy 4. a)What is momentum? b) What is the law of conservation of momentum? 
POTENTIAL AND KINETIC ENERGY OBJECTIVES: To determine the potential and kinetic energy of a freely falling...
POTENTIAL AND KINETIC ENERGY OBJECTIVES: To determine the potential and kinetic energy of a freely falling body To determine the loss in kinetic energy of an inelastic collision To calculate the percentage error of the experimental error of the velocity of a freely falling body using the conservation of mechanical energy of a body MATERIALS: Tennis balls Digital Timer Meter stick THEORY: Conservation of Mechanical Energy A body raised to a certain height possesses potential energy due to its position....
A brief summary about: Newton’s laws Friction and circular movement Work-energy(kinetic and potential)-power-and conservation of energy...
A brief summary about: Newton’s laws Friction and circular movement Work-energy(kinetic and potential)-power-and conservation of energy Fluid( pascal’s law,buyoant force,Archimedes principle, fluid flow and viscosity and bernoulli’s equation)
Give examples of changes of energy from potential to kinetic and from kinetic to potential.
Give examples of changes of energy from potential to kinetic and from kinetic to potential.
Is it possible for the potential energy and kinetic energy to both be maximum at the...
Is it possible for the potential energy and kinetic energy to both be maximum at the same moment in time for a bouncing spring? Explain.
Prove that the motion of the simple pendulum obeys the conservation of energy law (the sum...
Prove that the motion of the simple pendulum obeys the conservation of energy law (the sum of the kinetic and potential energies is a constant of the motion). Hint: The kinetic energy is (m / 2)(ds / dt)2 , where s = LX is the length of arc through which the pendulum swings and the potential energy is mgL[1 - cos(X)].
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT