Question

In: Physics

an object is moving along a circle of radius 400.0m with a speed of 20.0m/s. the...

an object is moving along a circle of radius 400.0m with a speed of 20.0m/s. the centripetal force acting on the object is 500.0N
a) find the mass of the object
b) find the work done by the centripetal force
c) what is the angular velocity of the object

Solutions

Expert Solution

a)   the centripetal force = mv2/R

=>    500.0 = (m * 20.02)/400.0

=>   the mass of the object , m = 500 kg

b)   work done by the centripetal force = 0 J

c)   the angular velocity of the object   = v/R

                                                             = 20/400

                                                            = 0.05 rad/s


Related Solutions

A 3 kg object is moving along the +y+y direction with a speed of 4 m/s...
A 3 kg object is moving along the +y+y direction with a speed of 4 m/s when it experiences an impulse of 5i^−8j^5i^−8j^ Ns. What is the object's speed after the impulse is applied?
An object with mass m1= 3.00 kg is moving along the positive x-axis with a speed...
An object with mass m1= 3.00 kg is moving along the positive x-axis with a speed v1i=2 m/s straight towards two objects with masses m2= 2.00 kg and m3= 4.00 kg, which are initially at rest. When they collide, object 1 comes to rest and object 2 moves away with a speed of v2f=1.5 m/s at an angle of 50o from the incoming path of object 1. For everything that follows, use a coordinate system where the final path of...
If a circle C with radius 1 rolls along the outside of the circle x2 +...
If a circle C with radius 1 rolls along the outside of the circle x2 + y2 = 36, a fixed point P on C traces out a curve called an epicycloid, with parametric equations x = 7 cos(t) − cos(7t), y = 7 sin(t) − sin(7t). Graph the epicycloid. Find the area it encloses.
A trooper is moving due south along the freeway at a speed of 33 m/s. At...
A trooper is moving due south along the freeway at a speed of 33 m/s. At time t = 0, a red car passes the trooper. The red car moves with constant velocity of 45 m/s southward. At the instant the trooper's car is passed, the trooper begins to speed up at a constant rate of 1.5 m/s2. What is the maximum distance ahead of the trooper that is reached by the red car? m
1) The position of an object moving along a straight line is s(t) = t^3 −...
1) The position of an object moving along a straight line is s(t) = t^3 − 15t^2 + 72t feet after t seconds. Find the object's velocity and acceleration after 9 seconds. 2) Given the function f (x ) =−3 x 2 + x − 8 , (a) Find the equation of the line tangent to f(x ) at the point (2, −2) . (b) Find the equation of the line normal to f(x ) at the point (2, −2)...
The function sequals=?f(t) gives the position of an object moving along the? s-axis as a function...
The function sequals=?f(t) gives the position of an object moving along the? s-axis as a function of time t. Graph f together with the velocity function ?v(t)equals=StartFraction ds Over dt EndFractiondsdtequals=f prime left parenthesis t right parenthesisf?(t) and the acceleration function ?a(t)equals=StartFraction d squared s Over dt squared EndFractiond2sdt2equals=f prime prime left parenthesis t right parenthesisf??(t)?, then complete parts? (a) through? (f). sequals=112112tminus?16 t squared16t2?, 0less than or equals?tless than or equals?77 ?(a heavy object fired straight up from? Earth's...
if an object moving in a circular path in a horizontal circle leaves its path it...
if an object moving in a circular path in a horizontal circle leaves its path it will move __________ in the direction of its __________.
write parametric equations in 2D for a particle moving in a clockwise motion along a circle...
write parametric equations in 2D for a particle moving in a clockwise motion along a circle radius 2 such that at t=0 , the particle is at point (-2,0) Please I need the answer with steps and explanation.. Clear handwriting please.. Thank you
The position of an object moving along an x axis is given by x = 3.12...
The position of an object moving along an x axis is given by x = 3.12 t - 4.08 t2 + 1.10 t3, where x is in meters and t in seconds. Find the position of the object at the following values of t: (a) 1 s, (b) 2 s, (c) 3 s, and (d) 4 s. (e) What is the object's displacement between t = 0 and t = 4 s? (f) What is its average velocity from t...
The position function of an object moving along a straight line is given by the function...
The position function of an object moving along a straight line is given by the function t3 - 15t2 -48t -10, where s is in metres and t is in seconds and 0≤15≤t . [7A] a) When is the velocity of the object greater than 21 m/s? b) When is the speed of the object less than 21 m/s? c) Illustrate the graphical representation for each of the above."
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT