In: Finance
1. Find the unpaid balance on the debt. (Round your answer to the nearest cent.)
After 5 years of monthly payments on $150,000 at 3% for 25 years.
2. Determine the payment to amortize the debt. (Round your answer to the nearest cent.)
Quarterly payments on $11,500 at 3.6% for 6 years.
$
3. Determine the payment to amortize the debt. (Round your answer to the nearest cent.)
Monthly payments on $140,000 at 4% for 25 years.
$
1
Monthly payment is:
Monthly payment | = | [P * R * (1+R)^N ] / [(1+R)^N -1] | |
Using the formula: | |||
Principle | P | 1,50,000.00 | |
Rate of interest per period: | |||
Annual rate of interest | 3.000% | ||
Frequency of payment | = | Once in 1 month period | |
Numer of payments in a year | = | 12/1 = | 12 |
Rate of interest per period | R | 0.03 /12 = | 0.2500% |
Total number of payments: | |||
Frequency of payment | = | Once in 1 month period | |
Number of years of loan repayment | = | 25 | |
Total number of payments | N | 25*12 = | 300 |
Period payment using the formula | = | [ 150000*0.0025*(1+0.0025)^300] / [(1+0.0025 ^300 -1] | |
Monthly payment | = | 711.32 |
Amortization statement for 5 years is:
Period | Opening liability | Interest expense | EMI Payment | Loan repaid/ (increase) | Closing liability |
N | A | B= A* 0.002500 | C | D=C-B | E=A-D |
1 | 1,50,000.00 | 375.00 | 711.32 | 336.32 | 1,49,663.68 |
2 | 1,49,663.68 | 374.16 | 711.32 | 337.16 | 1,49,326.53 |
3 | 1,49,326.53 | 373.32 | 711.32 | 338.00 | 1,48,988.52 |
4 | 1,48,988.52 | 372.47 | 711.32 | 338.85 | 1,48,649.68 |
5 | 1,48,649.68 | 371.62 | 711.32 | 339.69 | 1,48,309.99 |
6 | 1,48,309.99 | 370.77 | 711.32 | 340.54 | 1,47,969.44 |
7 | 1,47,969.44 | 369.92 | 711.32 | 341.39 | 1,47,628.05 |
8 | 1,47,628.05 | 369.07 | 711.32 | 342.25 | 1,47,285.80 |
9 | 1,47,285.80 | 368.21 | 711.32 | 343.10 | 1,46,942.70 |
10 | 1,46,942.70 | 367.36 | 711.32 | 343.96 | 1,46,598.74 |
11 | 1,46,598.74 | 366.50 | 711.32 | 344.82 | 1,46,253.92 |
12 | 1,46,253.92 | 365.63 | 711.32 | 345.68 | 1,45,908.24 |
13 | 1,45,908.24 | 364.77 | 711.32 | 346.55 | 1,45,561.69 |
14 | 1,45,561.69 | 363.90 | 711.32 | 347.41 | 1,45,214.28 |
15 | 1,45,214.28 | 363.04 | 711.32 | 348.28 | 1,44,866.00 |
16 | 1,44,866.00 | 362.16 | 711.32 | 349.15 | 1,44,516.85 |
17 | 1,44,516.85 | 361.29 | 711.32 | 350.02 | 1,44,166.82 |
18 | 1,44,166.82 | 360.42 | 711.32 | 350.90 | 1,43,815.92 |
19 | 1,43,815.92 | 359.54 | 711.32 | 351.78 | 1,43,464.14 |
20 | 1,43,464.14 | 358.66 | 711.32 | 352.66 | 1,43,111.49 |
21 | 1,43,111.49 | 357.78 | 711.32 | 353.54 | 1,42,757.95 |
22 | 1,42,757.95 | 356.89 | 711.32 | 354.42 | 1,42,403.53 |
23 | 1,42,403.53 | 356.01 | 711.32 | 355.31 | 1,42,048.22 |
24 | 1,42,048.22 | 355.12 | 711.32 | 356.20 | 1,41,692.02 |
25 | 1,41,692.02 | 354.23 | 711.32 | 357.09 | 1,41,334.94 |
26 | 1,41,334.94 | 353.34 | 711.32 | 357.98 | 1,40,976.96 |
27 | 1,40,976.96 | 352.44 | 711.32 | 358.87 | 1,40,618.08 |
28 | 1,40,618.08 | 351.55 | 711.32 | 359.77 | 1,40,258.31 |
29 | 1,40,258.31 | 350.65 | 711.32 | 360.67 | 1,39,897.64 |
30 | 1,39,897.64 | 349.74 | 711.32 | 361.57 | 1,39,536.07 |
31 | 1,39,536.07 | 348.84 | 711.32 | 362.48 | 1,39,173.59 |
32 | 1,39,173.59 | 347.93 | 711.32 | 363.38 | 1,38,810.21 |
33 | 1,38,810.21 | 347.03 | 711.32 | 364.29 | 1,38,445.91 |
34 | 1,38,445.91 | 346.11 | 711.32 | 365.20 | 1,38,080.71 |
35 | 1,38,080.71 | 345.20 | 711.32 | 366.12 | 1,37,714.60 |
36 | 1,37,714.60 | 344.29 | 711.32 | 367.03 | 1,37,347.57 |
37 | 1,37,347.57 | 343.37 | 711.32 | 367.95 | 1,36,979.62 |
38 | 1,36,979.62 | 342.45 | 711.32 | 368.87 | 1,36,610.75 |
39 | 1,36,610.75 | 341.53 | 711.32 | 369.79 | 1,36,240.96 |
40 | 1,36,240.96 | 340.60 | 711.32 | 370.71 | 1,35,870.25 |
41 | 1,35,870.25 | 339.68 | 711.32 | 371.64 | 1,35,498.61 |
42 | 1,35,498.61 | 338.75 | 711.32 | 372.57 | 1,35,126.03 |
43 | 1,35,126.03 | 337.82 | 711.32 | 373.50 | 1,34,752.53 |
44 | 1,34,752.53 | 336.88 | 711.32 | 374.44 | 1,34,378.10 |
45 | 1,34,378.10 | 335.95 | 711.32 | 375.37 | 1,34,002.73 |
46 | 1,34,002.73 | 335.01 | 711.32 | 376.31 | 1,33,626.42 |
47 | 1,33,626.42 | 334.07 | 711.32 | 377.25 | 1,33,249.16 |
48 | 1,33,249.16 | 333.12 | 711.32 | 378.19 | 1,32,870.97 |
49 | 1,32,870.97 | 332.18 | 711.32 | 379.14 | 1,32,491.83 |
50 | 1,32,491.83 | 331.23 | 711.32 | 380.09 | 1,32,111.74 |
51 | 1,32,111.74 | 330.28 | 711.32 | 381.04 | 1,31,730.71 |
52 | 1,31,730.71 | 329.33 | 711.32 | 381.99 | 1,31,348.72 |
53 | 1,31,348.72 | 328.37 | 711.32 | 382.95 | 1,30,965.77 |
54 | 1,30,965.77 | 327.41 | 711.32 | 383.90 | 1,30,581.87 |
55 | 1,30,581.87 | 326.45 | 711.32 | 384.86 | 1,30,197.01 |
56 | 1,30,197.01 | 325.49 | 711.32 | 385.82 | 1,29,811.18 |
57 | 1,29,811.18 | 324.53 | 711.32 | 386.79 | 1,29,424.39 |
58 | 1,29,424.39 | 323.56 | 711.32 | 387.76 | 1,29,036.64 |
59 | 1,29,036.64 | 322.59 | 711.32 | 388.73 | 1,28,647.91 |
60 | 1,28,647.91 | 321.62 | 711.32 | 389.70 | 1,28,258.21 |
Balance after paying for 5 years is 1,28,258.21
2
Quarterly payment | = | [P * R * (1+R)^N ] / [(1+R)^N -1] | |
Using the formula: | |||
Principle | P | 11,500.00 | |
Rate of interest per period: | |||
Annual rate of interest | 3.600% | ||
Frequency of payment | = | Once in 3 month period | |
Numer of payments in a year | = | 12/3 = | 4 |
Rate of interest per period | R | 0.036 /4 = | 0.9000% |
Total number of payments: | |||
Frequency of payment | = | Once in 3 month period | |
Number of years of loan repayment | = | 6 | |
Total number of payments | N | 6*4 = | 24 |
Period payment using the formula | = | [ 11500*0.009*(1+0.009)^24] / [(1+0.009 ^24 -1] | |
Quarterly payment | = | 534.92 |
3
Monthly payment
Monthly payment | = | [P * R * (1+R)^N ] / [(1+R)^N -1] | |
Using the formula: | |||
Principle | P | 1,40,000.00 | |
Rate of interest per period: | |||
Annual rate of interest | 4.000% | ||
Frequency of payment | = | Once in 1 month period | |
Numer of payments in a year | = | 12/1 = | 12 |
Rate of interest per period | R | 0.04 /12 = | 0.3333% |
Total number of payments: | |||
Frequency of payment | = | Once in 1 month period | |
Number of years of loan repayment | = | 6 | |
Total number of payments | N | 6*12 = | 72 |
Period payment using the formula | = | [ 140000*0.00333*(1+0.00333)^72] / [(1+0.00333 ^72 -1] | |
Monthly payment | = | 2,190.33 |