In: Finance
Suppose you are given the following information about the? default-free, coupon-paying yield? curve:
| 
 Maturity? (years)  | 
 1  | 
 2  | 
 3  | 
 4  | 
| 
 Coupon rate? (annual payment)  | 
 0.00?%  | 
 9.00?%  | 
 5.00?%  | 
 15.00?%  | 
| 
 YTM  | 
 1.991?%  | 
 4.346?%  | 
 6.229?%  | 
 6.759?%  | 
a. Use arbitrage to determine the yield to maturity of a? two-year zero-coupon bond.
b. What is the? zero-coupon yield curve for years 1 through? 4?
Note?:
Assume annual compounding.
| Maturity(Yrs) | 1 | 2 | 3 | 4 | ||||
| Coupon Rate(Annual Payment) | 0.00% | 9.00% | 5.00% | 15.00% | ||||
| YTM | 1.991% | 4.346% | 6.229% | 6.759% | ||||
| The Two year coupon bond | ||||||||
| Assuming the face value is $1000 | ||||||||
| The coupon rate for 2 yr bond is 9% | ||||||||
| Price of two year coupon bond = | 1000*0.09/1.04346+(1000+1000*0.09)/1.04346^2 | |||||||
| 86.25151 + 1001.094 | ||||||||
| 1087.346 | ||||||||
| Assuming face value of $90 | ||||||||
| Price of one year bond = 90/1.01991 | 88.24308 | |||||||
| Using the law of one price | ||||||||
| Price of two year zero bond = Price of 2 year coupon bond - Price of 1 yr coupon bond | ||||||||
| 1087.346-88.24308 | ||||||||
| 999.10292 | ||||||||
| The yield to maturity of the zero coupon bond is (1090/999.10292)^1/2 - 1 | ||||||||
| 1.044499 -1 | ||||||||
| 0.044499 | 4.45% | |||||||
| b) | The yield to maturity for 1 yr zero coupon bond is 1.991%, for 2 yr zero coupon is 4.45%, now we would calculate yield for 3 yrs and 4 yrs bond | |||||||
| 1 | 2 | 3 | 4 | |||||
| r coupon bond (Face value = $1000) | 50 | 50 | 1050 | |||||
| e-year zero (Face value = $ 60) | -50 | |||||||
| 2-year zero (Face value = $ 60) | -50 | |||||||
| Ar zero (Face Value = $1050) | - | - | 1050 | |||||
| Price of 3 yrs coupon bond is 50/1.06229 + 50/1.06229^2 + 1050/1.06229^3 | ||||||||
| (50/1.06229) + (50/(1.06229^2)) + (1050/(1.06229^3)) | ||||||||
| 967.2874 | ||||||||
| Using the law of one price rule | ||||||||
| Price (3 yr zero bond) = Price of 3 yrs coupon bond - Price of one year zero - price of two year zero | ||||||||
| 967.2874- 50/1.0991-50/1.04346^2 | ||||||||
| 967.2874-45.49177-45.92175 | ||||||||
| 875.87388 | ||||||||
| Solving for the YTM = (1050/875.87388)^(1/3) -1 = 1.062305-1 | ||||||||
| 0.062305 | 6.23% | |||||||
| Calculation of yield for 4 year bond | ||||||||
| 1 | 2 | 3 | 4 | |||||
| Coupon bond(face value = $1000) | 150 | 150 | 150 | 1150 | ||||
| 1 year zero bond(Face value = $150) | -150 | |||||||
| 2 year zero bond(Face value = $150) | -150 | |||||||
| 3 year zero bond(Face value = $150) | -150 | |||||||
| r zero bond | - | - | - | 1150 | ||||
| Price of 4 years coupon bond = 150/1.06759 + 150/(1.06759^2) + 150/(1.06759^3)+1150/(1.06759^4) | ||||||||
| 1280.665519 | ||||||||
| Using the law of one price rule | ||||||||
| Price of 4 yr zero bond = Price of 4 yrs coupon bond - Price of one year zero - price of two year zero - price of three year zero | ||||||||
| 874.397652 | ||||||||
| Solving for YTM for 4 yrs | ||||||||
| (1120/874.397652)^(1/4)-1 | ||||||||
| 0.063842313 | 6.38% | |||||||
| Year | Yield to maturity | |||||||
| 1 | 1.99% | |||||||
| 2 | 4.45% | |||||||
| 3 | 6.23% | |||||||
| 4 | 6.38% | |||||||