In: Finance
Suppose you are given the following information about the? default-free, coupon-paying yield? curve:
Maturity? (years) |
1 |
2 |
3 |
4 |
Coupon rate? (annual payment) |
0.00?% |
9.00?% |
5.00?% |
15.00?% |
YTM |
1.991?% |
4.346?% |
6.229?% |
6.759?% |
a. Use arbitrage to determine the yield to maturity of a? two-year zero-coupon bond.
b. What is the? zero-coupon yield curve for years 1 through? 4?
Note?:
Assume annual compounding.
Maturity(Yrs) | 1 | 2 | 3 | 4 | ||||
Coupon Rate(Annual Payment) | 0.00% | 9.00% | 5.00% | 15.00% | ||||
YTM | 1.991% | 4.346% | 6.229% | 6.759% | ||||
The Two year coupon bond | ||||||||
Assuming the face value is $1000 | ||||||||
The coupon rate for 2 yr bond is 9% | ||||||||
Price of two year coupon bond = | 1000*0.09/1.04346+(1000+1000*0.09)/1.04346^2 | |||||||
86.25151 + 1001.094 | ||||||||
1087.346 | ||||||||
Assuming face value of $90 | ||||||||
Price of one year bond = 90/1.01991 | 88.24308 | |||||||
Using the law of one price | ||||||||
Price of two year zero bond = Price of 2 year coupon bond - Price of 1 yr coupon bond | ||||||||
1087.346-88.24308 | ||||||||
999.10292 | ||||||||
The yield to maturity of the zero coupon bond is (1090/999.10292)^1/2 - 1 | ||||||||
1.044499 -1 | ||||||||
0.044499 | 4.45% | |||||||
b) | The yield to maturity for 1 yr zero coupon bond is 1.991%, for 2 yr zero coupon is 4.45%, now we would calculate yield for 3 yrs and 4 yrs bond | |||||||
1 | 2 | 3 | 4 | |||||
r coupon bond (Face value = $1000) | 50 | 50 | 1050 | |||||
e-year zero (Face value = $ 60) | -50 | |||||||
2-year zero (Face value = $ 60) | -50 | |||||||
Ar zero (Face Value = $1050) | - | - | 1050 | |||||
Price of 3 yrs coupon bond is 50/1.06229 + 50/1.06229^2 + 1050/1.06229^3 | ||||||||
(50/1.06229) + (50/(1.06229^2)) + (1050/(1.06229^3)) | ||||||||
967.2874 | ||||||||
Using the law of one price rule | ||||||||
Price (3 yr zero bond) = Price of 3 yrs coupon bond - Price of one year zero - price of two year zero | ||||||||
967.2874- 50/1.0991-50/1.04346^2 | ||||||||
967.2874-45.49177-45.92175 | ||||||||
875.87388 | ||||||||
Solving for the YTM = (1050/875.87388)^(1/3) -1 = 1.062305-1 | ||||||||
0.062305 | 6.23% | |||||||
Calculation of yield for 4 year bond | ||||||||
1 | 2 | 3 | 4 | |||||
Coupon bond(face value = $1000) | 150 | 150 | 150 | 1150 | ||||
1 year zero bond(Face value = $150) | -150 | |||||||
2 year zero bond(Face value = $150) | -150 | |||||||
3 year zero bond(Face value = $150) | -150 | |||||||
r zero bond | - | - | - | 1150 | ||||
Price of 4 years coupon bond = 150/1.06759 + 150/(1.06759^2) + 150/(1.06759^3)+1150/(1.06759^4) | ||||||||
1280.665519 | ||||||||
Using the law of one price rule | ||||||||
Price of 4 yr zero bond = Price of 4 yrs coupon bond - Price of one year zero - price of two year zero - price of three year zero | ||||||||
874.397652 | ||||||||
Solving for YTM for 4 yrs | ||||||||
(1120/874.397652)^(1/4)-1 | ||||||||
0.063842313 | 6.38% | |||||||
Year | Yield to maturity | |||||||
1 | 1.99% | |||||||
2 | 4.45% | |||||||
3 | 6.23% | |||||||
4 | 6.38% |