In: Statistics and Probability
Use table below to analyze correlation and to develop regression equations describing the relationships between person’s height and weight. Make separate regression lines for men and women.
| 
 gender  | 
 height  | 
 weight  | 
| 
 0  | 
 72  | 
 155  | 
| 
 0  | 
 67  | 
 145  | 
| 
 0  | 
 65  | 
 125  | 
| 
 1  | 
 67  | 
 120  | 
| 
 1  | 
 63  | 
 105  | 
| 
 1  | 
 54  | 
 120  | 
| 
 1  | 
 66  | 
 125  | 
| 
 1  | 
 64  | 
 125  | 
| 
 0  | 
 72  | 
 160  | 
| 
 0  | 
 66  | 
 133  | 
| 
 0  | 
 66  | 
 175  | 
| 
 0  | 
 71  | 
 205  | 
| 
 0  | 
 71  | 
 175  | 
| 
 1  | 
 57  | 
 82  | 
| 
 1  | 
 66  | 
 125  | 
| 
 1  | 
 67  | 
 133  | 
| 
 0  | 
 70  | 
 175  | 
| 
 0  | 
 73  | 
 163  | 
| 
 1  | 
 68  | 
 133  | 
| 
 0  | 
 72  | 
 180  | 
| 
 1  | 
 65  | 
 107  | 
| 
 1  | 
 70  | 
 170  | 
| 
 1  | 
 64  | 
 110  | 
| 
 1  | 
 64  | 
 140  | 
| 
 1  | 
 63  | 
 110  | 
| 
 1  | 
 60  | 
 110  | 
| 
 1  | 
 69  | 
 125  | 
| 
 1  | 
 65  | 
 120  | 
| 
 1  | 
 67  | 
 180  | 
| 
 0  | 
 67  | 
 120  | 
| 
 0  | 
 68  | 
 140  | 
| 
 0  | 
 65  | 
 130  | 
| 
 1  | 
 62  | 
 122  | 
| 
 1  | 
 66  | 
 114  | 
| 
 1  | 
 65  | 
 115  | 
| 
 1  | 
 63  | 
 125  | 
| 
 0  | 
 73  | 
 195  | 
| 
 0  | 
 69  | 
 135  | 
| 
 0  | 
 70  | 
 145  | 
| 
 0  | 
 72  | 
 170  | 
| 
 0  | 
 73  | 
 172  | 
| 
 0  | 
 69  | 
 168  | 
| 
 0  | 
 68  | 
 155  | 
| 
 0  | 
 71  | 
 185  | 
| 
 0  | 
 71  | 
 175  | 
| 
 0  | 
 68  | 
 158  | 
| 
 0  | 
 69  | 
 185  | 
| 
 0  | 
 67  | 
 146  | 
| 
 0  | 
 66  | 
 135  | 
| 
 0  | 
 67  | 
 150  | 
| 
 0  | 
 72  | 
 160  | 
| 
 0  | 
 68  | 
 155  | 
| 
 0  | 
 75  | 
 230  | 
| 
 0  | 
 68  | 
 149  | 
| 
 0  | 
 73  | 
 240  | 
| 
 0  | 
 72  | 
 170  | 
| 
 0  | 
 72  | 
 198  | 
| 
 0  | 
 72  | 
 163  | 
| 
 0  | 
 72  | 
 230  | 
| 
 0  | 
 74  | 
 170  | 
| 
 0  | 
 68  | 
 151  | 
| 
 0  | 
 73  | 
 220  | 
| 
 0  | 
 68  | 
 145  | 
| 
 0  | 
 70  | 
 130  | 
| 
 0  | 
 72  | 
 160  | 
| 
 0  | 
 70  | 
 210  | 
| 
 0  | 
 67  | 
 145  | 
| 
 0  | 
 67  | 
 185  | 
| 
 0  | 
 71  | 
 237  | 
| 
 0  | 
 72  | 
 205  | 
| 
 0  | 
 73  | 
 147  | 
| 
 0  | 
 68  | 
 170  | 
| 
 0  | 
 72  | 
 181  | 
| 
 0  | 
 68  | 
 150  | 
| 
 0  | 
 67  | 
 150  | 
| 
 0  | 
 70  | 
 200  | 
| 
 0  | 
 71  | 
 175  | 
| 
 0  | 
 70  | 
 155  | 
| 
 0  | 
 67  | 
 167  | 
| 
 1  | 
 58  | 
 100  | 
| 
 1  | 
 56  | 
 100  | 
Soln
i)
Assuming for Males, Gender = 0
| 
 height (Y)  | 
 weight (X)  | 
 XY  | 
 Y2  | 
 X2  | 
|
| 
 72  | 
 155  | 
 11160  | 
 5184  | 
 24025  | 
|
| 
 67  | 
 145  | 
 9715  | 
 4489  | 
 21025  | 
|
| 
 65  | 
 125  | 
 8125  | 
 4225  | 
 15625  | 
|
| 
 72  | 
 160  | 
 11520  | 
 5184  | 
 25600  | 
|
| 
 66  | 
 133  | 
 8778  | 
 4356  | 
 17689  | 
|
| 
 66  | 
 175  | 
 11550  | 
 4356  | 
 30625  | 
|
| 
 71  | 
 205  | 
 14555  | 
 5041  | 
 42025  | 
|
| 
 71  | 
 175  | 
 12425  | 
 5041  | 
 30625  | 
|
| 
 70  | 
 175  | 
 12250  | 
 4900  | 
 30625  | 
|
| 
 73  | 
 163  | 
 11899  | 
 5329  | 
 26569  | 
|
| 
 72  | 
 180  | 
 12960  | 
 5184  | 
 32400  | 
|
| 
 67  | 
 120  | 
 8040  | 
 4489  | 
 14400  | 
|
| 
 68  | 
 140  | 
 9520  | 
 4624  | 
 19600  | 
|
| 
 65  | 
 130  | 
 8450  | 
 4225  | 
 16900  | 
|
| 
 73  | 
 195  | 
 14235  | 
 5329  | 
 38025  | 
|
| 
 69  | 
 135  | 
 9315  | 
 4761  | 
 18225  | 
|
| 
 70  | 
 145  | 
 10150  | 
 4900  | 
 21025  | 
|
| 
 72  | 
 170  | 
 12240  | 
 5184  | 
 28900  | 
|
| 
 73  | 
 172  | 
 12556  | 
 5329  | 
 29584  | 
|
| 
 69  | 
 168  | 
 11592  | 
 4761  | 
 28224  | 
|
| 
 68  | 
 155  | 
 10540  | 
 4624  | 
 24025  | 
|
| 
 71  | 
 185  | 
 13135  | 
 5041  | 
 34225  | 
|
| 
 71  | 
 175  | 
 12425  | 
 5041  | 
 30625  | 
|
| 
 68  | 
 158  | 
 10744  | 
 4624  | 
 24964  | 
|
| 
 69  | 
 185  | 
 12765  | 
 4761  | 
 34225  | 
|
| 
 67  | 
 146  | 
 9782  | 
 4489  | 
 21316  | 
|
| 
 66  | 
 135  | 
 8910  | 
 4356  | 
 18225  | 
|
| 
 67  | 
 150  | 
 10050  | 
 4489  | 
 22500  | 
|
| 
 72  | 
 160  | 
 11520  | 
 5184  | 
 25600  | 
|
| 
 68  | 
 155  | 
 10540  | 
 4624  | 
 24025  | 
|
| 
 75  | 
 230  | 
 17250  | 
 5625  | 
 52900  | 
|
| 
 68  | 
 149  | 
 10132  | 
 4624  | 
 22201  | 
|
| 
 73  | 
 240  | 
 17520  | 
 5329  | 
 57600  | 
|
| 
 72  | 
 170  | 
 12240  | 
 5184  | 
 28900  | 
|
| 
 72  | 
 198  | 
 14256  | 
 5184  | 
 39204  | 
|
| 
 72  | 
 163  | 
 11736  | 
 5184  | 
 26569  | 
|
| 
 72  | 
 230  | 
 16560  | 
 5184  | 
 52900  | 
|
| 
 74  | 
 170  | 
 12580  | 
 5476  | 
 28900  | 
|
| 
 68  | 
 151  | 
 10268  | 
 4624  | 
 22801  | 
|
| 
 73  | 
 220  | 
 16060  | 
 5329  | 
 48400  | 
|
| 
 68  | 
 145  | 
 9860  | 
 4624  | 
 21025  | 
|
| 
 70  | 
 130  | 
 9100  | 
 4900  | 
 16900  | 
|
| 
 72  | 
 160  | 
 11520  | 
 5184  | 
 25600  | 
|
| 
 70  | 
 210  | 
 14700  | 
 4900  | 
 44100  | 
|
| 
 67  | 
 145  | 
 9715  | 
 4489  | 
 21025  | 
|
| 
 67  | 
 185  | 
 12395  | 
 4489  | 
 34225  | 
|
| 
 71  | 
 237  | 
 16827  | 
 5041  | 
 56169  | 
|
| 
 72  | 
 205  | 
 14760  | 
 5184  | 
 42025  | 
|
| 
 73  | 
 147  | 
 10731  | 
 5329  | 
 21609  | 
|
| 
 68  | 
 170  | 
 11560  | 
 4624  | 
 28900  | 
|
| 
 72  | 
 181  | 
 13032  | 
 5184  | 
 32761  | 
|
| 
 68  | 
 150  | 
 10200  | 
 4624  | 
 22500  | 
|
| 
 67  | 
 150  | 
 10050  | 
 4489  | 
 22500  | 
|
| 
 70  | 
 200  | 
 14000  | 
 4900  | 
 40000  | 
|
| 
 71  | 
 175  | 
 12425  | 
 5041  | 
 30625  | 
|
| 
 70  | 
 155  | 
 10850  | 
 4900  | 
 24025  | 
|
| 
 67  | 
 167  | 
 11189  | 
 4489  | 
 27889  | 
|
| 
 Total  | 
 3980  | 
 9603  | 
 672962  | 
 278258  | 
 1663699  | 

Using the above values and formula, we get:
r = 0.603
The magnitude of r indicates moderate correlation between height and weight for males and the positive sign indicates direct relationship ie as height increases, weight also increases and vice versa
Let the regression equation be: Y = a + bX
Where
Slope(b) = {n*∑XY - ∑X *∑Y}/{n*∑X2 – (∑X)2 } = 0.05
and a = ∑Y/n – b*∑X/n = 60.87
Hence, Height = 60.87 + 0.05 Weight
ii)
Females:
| 
 gender  | 
 height (Y)  | 
 weight (X)  | 
 XY  | 
 Y2  | 
 X2  | 
| 
 1  | 
 67  | 
 120  | 
 8040  | 
 4489  | 
 14400  | 
| 
 1  | 
 63  | 
 105  | 
 6615  | 
 3969  | 
 11025  | 
| 
 1  | 
 54  | 
 120  | 
 6480  | 
 2916  | 
 14400  | 
| 
 1  | 
 66  | 
 125  | 
 8250  | 
 4356  | 
 15625  | 
| 
 1  | 
 64  | 
 125  | 
 8000  | 
 4096  | 
 15625  | 
| 
 1  | 
 57  | 
 82  | 
 4674  | 
 3249  | 
 6724  | 
| 
 1  | 
 66  | 
 125  | 
 8250  | 
 4356  | 
 15625  | 
| 
 1  | 
 67  | 
 133  | 
 8911  | 
 4489  | 
 17689  | 
| 
 1  | 
 68  | 
 133  | 
 9044  | 
 4624  | 
 17689  | 
| 
 1  | 
 65  | 
 107  | 
 6955  | 
 4225  | 
 11449  | 
| 
 1  | 
 70  | 
 170  | 
 11900  | 
 4900  | 
 28900  | 
| 
 1  | 
 64  | 
 110  | 
 7040  | 
 4096  | 
 12100  | 
| 
 1  | 
 64  | 
 140  | 
 8960  | 
 4096  | 
 19600  | 
| 
 1  | 
 63  | 
 110  | 
 6930  | 
 3969  | 
 12100  | 
| 
 1  | 
 60  | 
 110  | 
 6600  | 
 3600  | 
 12100  | 
| 
 1  | 
 69  | 
 125  | 
 8625  | 
 4761  | 
 15625  | 
| 
 1  | 
 65  | 
 120  | 
 7800  | 
 4225  | 
 14400  | 
| 
 1  | 
 67  | 
 180  | 
 12060  | 
 4489  | 
 32400  | 
| 
 1  | 
 62  | 
 122  | 
 7564  | 
 3844  | 
 14884  | 
| 
 1  | 
 66  | 
 114  | 
 7524  | 
 4356  | 
 12996  | 
| 
 1  | 
 65  | 
 115  | 
 7475  | 
 4225  | 
 13225  | 
| 
 1  | 
 63  | 
 125  | 
 7875  | 
 3969  | 
 15625  | 
| 
 1  | 
 58  | 
 100  | 
 5800  | 
 3364  | 
 10000  | 
| 
 1  | 
 56  | 
 100  | 
 5600  | 
 3136  | 
 10000  | 
| 
 Total  | 
 1529  | 
 2916  | 
 186972  | 
 97799  | 
 364206  | 
Using the above values and formula, we get:
r = 0.610
The magnitude of r indicates moderate correlation between height and weight for females and the positive sign indicates direct relationship ie as height increases, weight also increases and vice versa
Let the regression equation be: Y = a + bX
Where
Slope(b) = {n*∑XY - ∑X *∑Y}/{n*∑X2 – (∑X)2 } = 0.12
and a = ∑Y/n – b*∑X/n = 49.02
Hence, Height = 49.02 + 0.12 Weight