Question

In: Statistics and Probability

Use table below to analyze correlation and to develop regression equations describing the relationships between person’s...

Use table below to analyze correlation and to develop regression equations describing the relationships between person’s height and weight. Make separate regression lines for men and women.

gender

height

weight

0

72

155

0

67

145

0

65

125

1

67

120

1

63

105

1

54

120

1

66

125

1

64

125

0

72

160

0

66

133

0

66

175

0

71

205

0

71

175

1

57

82

1

66

125

1

67

133

0

70

175

0

73

163

1

68

133

0

72

180

1

65

107

1

70

170

1

64

110

1

64

140

1

63

110

1

60

110

1

69

125

1

65

120

1

67

180

0

67

120

0

68

140

0

65

130

1

62

122

1

66

114

1

65

115

1

63

125

0

73

195

0

69

135

0

70

145

0

72

170

0

73

172

0

69

168

0

68

155

0

71

185

0

71

175

0

68

158

0

69

185

0

67

146

0

66

135

0

67

150

0

72

160

0

68

155

0

75

230

0

68

149

0

73

240

0

72

170

0

72

198

0

72

163

0

72

230

0

74

170

0

68

151

0

73

220

0

68

145

0

70

130

0

72

160

0

70

210

0

67

145

0

67

185

0

71

237

0

72

205

0

73

147

0

68

170

0

72

181

0

68

150

0

67

150

0

70

200

0

71

175

0

70

155

0

67

167

1

58

100

1

56

100

Solutions

Expert Solution

Soln

i)

Assuming for Males, Gender = 0

height (Y)

weight (X)

XY

Y2

X2

72

155

11160

5184

24025

67

145

9715

4489

21025

65

125

8125

4225

15625

72

160

11520

5184

25600

66

133

8778

4356

17689

66

175

11550

4356

30625

71

205

14555

5041

42025

71

175

12425

5041

30625

70

175

12250

4900

30625

73

163

11899

5329

26569

72

180

12960

5184

32400

67

120

8040

4489

14400

68

140

9520

4624

19600

65

130

8450

4225

16900

73

195

14235

5329

38025

69

135

9315

4761

18225

70

145

10150

4900

21025

72

170

12240

5184

28900

73

172

12556

5329

29584

69

168

11592

4761

28224

68

155

10540

4624

24025

71

185

13135

5041

34225

71

175

12425

5041

30625

68

158

10744

4624

24964

69

185

12765

4761

34225

67

146

9782

4489

21316

66

135

8910

4356

18225

67

150

10050

4489

22500

72

160

11520

5184

25600

68

155

10540

4624

24025

75

230

17250

5625

52900

68

149

10132

4624

22201

73

240

17520

5329

57600

72

170

12240

5184

28900

72

198

14256

5184

39204

72

163

11736

5184

26569

72

230

16560

5184

52900

74

170

12580

5476

28900

68

151

10268

4624

22801

73

220

16060

5329

48400

68

145

9860

4624

21025

70

130

9100

4900

16900

72

160

11520

5184

25600

70

210

14700

4900

44100

67

145

9715

4489

21025

67

185

12395

4489

34225

71

237

16827

5041

56169

72

205

14760

5184

42025

73

147

10731

5329

21609

68

170

11560

4624

28900

72

181

13032

5184

32761

68

150

10200

4624

22500

67

150

10050

4489

22500

70

200

14000

4900

40000

71

175

12425

5041

30625

70

155

10850

4900

24025

67

167

11189

4489

27889

Total

3980

9603

672962

278258

1663699

Using the above values and formula, we get:

r = 0.603

The magnitude of r indicates moderate correlation between height and weight for males and the positive sign indicates direct relationship ie as height increases, weight also increases and vice versa

Let the regression equation be: Y = a + bX

Where

Slope(b) = {n*∑XY - ∑X *∑Y}/{n*∑X2 – (∑X)2 } = 0.05

and a = ∑Y/n – b*∑X/n = 60.87

Hence, Height = 60.87 + 0.05 Weight

ii)

Females:

gender

height (Y)

weight (X)

XY

Y2

X2

1

67

120

8040

4489

14400

1

63

105

6615

3969

11025

1

54

120

6480

2916

14400

1

66

125

8250

4356

15625

1

64

125

8000

4096

15625

1

57

82

4674

3249

6724

1

66

125

8250

4356

15625

1

67

133

8911

4489

17689

1

68

133

9044

4624

17689

1

65

107

6955

4225

11449

1

70

170

11900

4900

28900

1

64

110

7040

4096

12100

1

64

140

8960

4096

19600

1

63

110

6930

3969

12100

1

60

110

6600

3600

12100

1

69

125

8625

4761

15625

1

65

120

7800

4225

14400

1

67

180

12060

4489

32400

1

62

122

7564

3844

14884

1

66

114

7524

4356

12996

1

65

115

7475

4225

13225

1

63

125

7875

3969

15625

1

58

100

5800

3364

10000

1

56

100

5600

3136

10000

Total

1529

2916

186972

97799

364206

Using the above values and formula, we get:

r = 0.610

The magnitude of r indicates moderate correlation between height and weight for females and the positive sign indicates direct relationship ie as height increases, weight also increases and vice versa

Let the regression equation be: Y = a + bX

Where

Slope(b) = {n*∑XY - ∑X *∑Y}/{n*∑X2 – (∑X)2 } = 0.12

and a = ∑Y/n – b*∑X/n = 49.02

Hence, Height = 49.02 + 0.12 Weight


Related Solutions

Use the data values in the table below to calculate the correlation, r, between the variables...
Use the data values in the table below to calculate the correlation, r, between the variables x and y. x y 4 12.32 5 13.1 6 16.68 7 20.26 8 22.44 9 22.72 10 23.4 11 26.98 12 28.66 Give your answer to rounded three decimal places.
Regression and correlation analysis both describe the strength of linear relationships between variables. Consider the concepts...
Regression and correlation analysis both describe the strength of linear relationships between variables. Consider the concepts of education and income. Many people would say these two variables are related in a linear fashion. As education increases, income usually increases (although not necessarily at the same rate). Can you think of two variables that are related in such a way that their relationship changes over their range of possible values (i.e., in a curvilinear fashion)? How would you analyze the relationship...
The table below summarizes nested multiple regression models used to predict a person’s quality of life...
The table below summarizes nested multiple regression models used to predict a person’s quality of life score. Model 1 Model 2 Model 3 est. sig. est. sig. est. sig. intercept 16.68 <.001 9.16 <.001   7.57 <.001 size of social network   0.59 0.027 0.44 0.076   0.43 0.059 college degree — 3.73 0.014   3.87 0.030 time (yrs) at current job — —   0.91 0.046 # of siblings — — –0.68 0.146 R2R2 3.65% 8.01% 9.60% ΔR2ΔR2 3.65% 4.36% 1.59% FF (for ΔR2ΔR2)...
Pearson Correlation Use the Pearson Correlation to analyze the data below. 1. Report the strength (number)...
Pearson Correlation Use the Pearson Correlation to analyze the data below. 1. Report the strength (number) of the correlation (2 points). 2. Is the correlation statistically significant (alpha .05 two-tailed)? (3 points) income $ fireworks $ 5000 500 10000 450 15000 400 20000 350 25000 300 30000 250 35000 200 40000 150 45000 100 50000 50 55000 25 60000 20 65000 15 70000 10 75000 5 80000 2 85000 1 90000 0 95000 0 100000 0 105000 0 110000 0...
Analyze the relationships between these elements below: — Assets are probable future economic benefits obtained or...
Analyze the relationships between these elements below: — Assets are probable future economic benefits obtained or controlled by a particular entity as a result of past transactions or events. — Liabilities are probable future sacrifices of economic benefits arising from present obligations of a particular entity to transfer assets or provide services to other entities in the future as a result of past transactions or events. — Equity or net assets is the residual interest in the assets of an...
Find the correlation coefficient r for the given table below and use it to determine if...
Find the correlation coefficient r for the given table below and use it to determine if there is a Strong Negative or Strong Positive or Weak Negative or Weak Positive correlation. (Check your spelling!) Redshift | 0.0233 |0.0539 | 0.0718 | 0.0395 | 0.0438 | 0.0103                                    =Distance| 0.32 | 0.75    | 1.00 | 0.55    | 0.61   | 0.14
Develop a simple linear regression model to predict a person’s income (INCOME) based on their age...
Develop a simple linear regression model to predict a person’s income (INCOME) based on their age (AGE) using a 95% level of confidence. a. Write the regression equation. Discuss the statistical significance of the model as whole using the appropriate regression statistic at a 95% level of confidence. Discuss the statistical significance of the coefficient for the independent variable using the appropriate regression statistic at a 95% level of confidence. Interpret the coefficient for the independent variable. What percentage of...
. Develop a simple linear regression model to predict a person’s income (INCOME) based upon their...
. Develop a simple linear regression model to predict a person’s income (INCOME) based upon their years of education (EDUC) using a 95% level of confidence. a. Write the reqression equation. b. Discuss the statistical significance of the model as a whole using the appropriate regression statistic at a 95% level of confidence. c. Discuss the statistical significance of the coefficient for the independent variable using the appropriate regression statistic at a 95% level of confidence. d. Interpret the coefficient...
Explain Key Statistical Relationships between Covariance and Correlation of Returns
Explain Key Statistical Relationships between Covariance and Correlation of Returns
What is the real difference between between correlation and regression analysis? I see that correlation allows...
What is the real difference between between correlation and regression analysis? I see that correlation allows us to examine whether two variables exhibit some kind of association with each other. Does correlation mean means that one variable is dependent on another? Is this an example of correlation - Tips are dependent on the actual restaurant bill? Can you give other examples of correlation and regression? Thanks.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT