Question

In: Physics

(a)One end of a string is attached to a wall and the other end is attached...

(a)One end of a string is attached to a wall and the other end is attached to a mass sitting on a ramp tilted at an angle of 35 degrees. It takes a pulse 10 ms to travel the length of the 1 m string. The string has a mass 1.5 g. What is the mass that is attached to the string?

 

(b) The string is replaced by two strings that are knotted together, L1 has a length 60 cm and L2 has a length of 40 cm. They have a linear mass density of of mu1 = 1.4 x 10-4 kg/m and mu2 = 2.8 x 10-4 kg/m. Like before, they are attached to the mass you found in part a. A pulse is sent from each end of the string. Which pulse meets the knot first?

Solutions

Expert Solution


Related Solutions

A 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall.
 Part AA 23.3-kg mass is attached to one end of a horizontal spring, with the other end of the spring fixed to a wall. The mass is pulled away from the equilibrium position (x = 0) a distance of 17.5 cm and released. It then oscillates in simple harmonic motion with a frequency of 8.38 Hz. At what position, measured from the equilibrium position, is the mass 2.50 seconds after it is released?–5.23 cm16.6 cm–5.41 cm–8.84 cm–11.6 cm Part BA 23.3-kg...
From the end of a string (whose other end is firmly attached to the ceiling) we...
From the end of a string (whose other end is firmly attached to the ceiling) we attach a mass m1.Similarly, we attach a mass m2 from the end of a different string. Both strings have equal lengths and the masses are barely in contact when they are hanging freely. We pull out both masses so that they form angles θ1and θ2, respectively, with their equilibrium (vertical) positions. We then release the masses such that there is an elastic, heads-on collision...
A 100 kg uniform beam is attached to a vertical wall at one end and is...
A 100 kg uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. Calculate the magnitude of the vertical component of the force that the wall exerts on the left end of the beam if the angle between the cable and horizontal is θ = 43°. The angle between the horizontal and the beam is 30 degrees.
A ball is attached to one end of a wire, the other end being fastened to...
A ball is attached to one end of a wire, the other end being fastened to the ceiling. The wire is held horizontal, and the ball is released from rest (see the drawing). It swings downward and strikes a block initially at rest on a horizontal frictionless surface. Air resistance is negligible, and the collision is elastic. The masses of the ball and block are, respectively, 1.6 kg and 2.3 kg, and the length of the wire is 1.21 m....
A horizontal wire has one end fastened to a wall while the other end is pulled...
A horizontal wire has one end fastened to a wall while the other end is pulled with a force of 200 N. The wire has a length of 5 m, a volume mass density of 7,400 kg/m3 , and a resistivity of 6.9e-07 Ωm. A transverse pulse takes 0.2 s to travel the length of the wire. Calculate the electrical power dissipated by the wire while a current of 2 A is passing through the wire
A horizontal wire has one end fastened to a wall while the other end is pulled...
A horizontal wire has one end fastened to a wall while the other end is pulled with a force of 200 N. The wire has a length of 5 m, a volume mass density of 7,000 kg/m3 , and a resistivity of 6.9e-07 Ωm. A transverse pulse takes 0.2 s to travel the length of the wire. Calculate the electrical power dissipated by the wire while a current of 2 A is passing through the wire.
One end of a horizontal string is attached to a small-amplitude mechanical 60.0 Hz oscillator. The...
One end of a horizontal string is attached to a small-amplitude mechanical 60.0 Hz oscillator. The string's mass per unit length is 3.9 x 10^{-4} kg/m. The string passes over a pulley, a distance L = 1.50 m away, and weights are hung from this end. Assume the string at the oscillator is a node, which is nearly true.   A. What mass m must be hung from this end of the string to produce one loop of a standing...
In the figure shown, one end of a uniform beam that weighs 827. N is attached to a wall with a hinge.
In the figure shown, one end of a uniform beam that weighs 827. N is attached to a wall with a hinge. The other end is held up by a wire. So the beam is in static equilibrium. There is an unknown horizontal and an unknown vertical force on the hinge.(a) Find the tension in the wire.N(b) What is the horizontal component of the force of the hinge on the beam?N(c) What is the vertical component of the force of...
Suppose a 1 kg mass is attached to the end of a string that is stretched...
Suppose a 1 kg mass is attached to the end of a string that is stretched 0.2 m by a force of 500 N (newtons). An exterior force F0 cos 50t acts on the mass. Find the position function x(t) if the initial conditions are given by x(0) = 0, x′(0) = 50.
(a) A string of length L is fixed at one end (in other words, y(0) =...
(a) A string of length L is fixed at one end (in other words, y(0) = 0) and free at the other end (y 0 (L) = 0). Consider the position-dependent wave equation for the string. What are f, g, w, α1, β1, α2 and β2 of this Sturm-Liouville system? Find the eigenvalues and eigenvectors of this system. How may these be useful for solving problems? (Aside: this is known as the one-dimensional Helmholtz equation.) (b) Consider a string that...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT