Question

In: Chemistry

When 0.595 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from...

When 0.595 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 25.4 ∘C to 29.9 ∘C.

Part A

Find ΔErxn for the combustion of biphenyl in kJ/mol biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/∘C.

Part B

Learning Goal: To understand the concepts of heat capacity, specific heat, and molar heat capacity. Heat capacity, C, is the amount of energy required to raise the temperature of a substance by exactly 1 degree Celsius. The energy needed to warm an object increases as the mass of that object increases. We see this in our everyday life. For example, we know that it takes much more energy to heat a large tank of water than a small cup. Because of this dependence on mass, experimentally determined heat capacities are always reported in terms of the amount of the substance that is heated. One method is to report how much energy it takes to raise the temperature of one mole of a substance by exactly 1 degree Celsius. This value is the molar heat capacity, which has the symbol Cp.The molar heat capacity is given in the units J/(mol⋅∘C). A second method is to report how much energy it takes to raise the temperature of one gram of a substance by exactly 1 degree Celsius. This value is the specific heat, which has been given the symbol Cs. The units for specific heat are J/(g⋅∘C). The heat capacity of a substance is therefore related to the energy q needed to raise its temperature by an amount ΔT. That is, q=nCpΔT, where n denotes the number of moles of the substance, or q=mCsΔT, where m denotes the number of grams of the substance.

Part 1

It takes 55.0 J to raise the temperature of an 9.90 g piece of unknown metal from 13.0∘C to 24.8 ∘C. What is the specific heat for the metal?

Express your answer with the appropriate units.

Part 2

The molar heat capacity of silver is 25.35 J/mol⋅∘C. How much energy would it take to raise the temperature of 9.90 g of silver by 16.0 ∘C?

Express your answer with the appropriate units.

Part 3

What is the specific heat of silver? Express your answer with the appropriate units.

Solutions

Expert Solution

A)
Q released = C(calorimeter) * delta T
    = 5.86 * (29.9 - 25.4)
    = 26.37 KJ

this heat is released by 0.595 g of C12H10
Molar mass of C12H10 = 12*12 + 10*1 = 154 g/mol
number of moles of C12H10 = mass / molar mass
                                                          = 0.595 / 154
                                                          = 3.864*10^-3 mol

ΔErxn = Q / mol
              = 26.37 KJ / (3.864*10^-3 mol)
              = 6825 KJ/mol

B)
1)
use:
Q = m*C*(Tf-Ti)
55 = 9.9*C*(24.8 - 13)
C = 0.47 J/goC
Answer: 0.47 J/goC

2)
mass of silver = 9.9 g
Molar mass of silver = 107.87 g/mol
number of moles of silver,n = mass / molar mass
                                                      = 9.9 / 107.87
                                                      = 0.0918 mol

Q = n*C*(Tf-Ti)
    = 0.0918*25.35*(16)
   =37.22 J
Answer: 37.22 J

3)
specific heat = molar heat capacity / molar mass
                           = 25.35 / 107.87
                           = 0.235 J/goC
Answer: 0.235 J/goC


Related Solutions

A 1.000 g-sample of a compound undergoes combustion in a bomb calorimeter. The temperature of the...
A 1.000 g-sample of a compound undergoes combustion in a bomb calorimeter. The temperature of the calorimeter rises from 12.0 oC to 70.8 oC. If the heat capacity of the calorimeter is 810.1 J/oC, determine the change in internal energy for the combustion reaction,   ΔΔ ΔΔErxn, in kJ/mol. The molar mass of the compound is 142.32 g/mol. What is the energy change associated with 3.5 mol of D being formed? 2 B + C   ⟶⟶ ⟶⟶ D + E   ...
A. When a 0.235-g sample of benzoic acid is combusted in a bomb calorimeter, the temperature...
A. When a 0.235-g sample of benzoic acid is combusted in a bomb calorimeter, the temperature rises 1.644 ∘C . When a 0.275-g sample of caffeine, C8H10O2N4, is burned, the temperature rises 1.585 ∘C . Using the value 26.38 kJ/g for the heat of combustion of benzoic acid, calculate the heat of combustion per mole of caffeine at constant volume. B. Assuming that there is an uncertainty of 0.002 ∘C in each temperature reading and that the masses of samples...
Q) The combustion of 3.07 g of hydrogen in a bomb calorimeter with a heat capacity...
Q) The combustion of 3.07 g of hydrogen in a bomb calorimeter with a heat capacity of 26.24 kJ/K results in a rise in temperature from 18.43 °C to 35.02 °C. Calculate the heat of combustion (in kJ/g) of the hydrogen. Report your answer to three significant figures. Please show your work and equations. Thank you!
When a 3.125 g sample of ammonium nitrate decomposes in a bomb calorimeter with a heat...
When a 3.125 g sample of ammonium nitrate decomposes in a bomb calorimeter with a heat capacity of 4.116kJ/C the temperature rises from 24.15 degrees C to 25.35 degrees C. What is delta E for the decomposition of ammonium nitrate Nh4NO3 --> N2O + 2 H2O
41. When 0.500 g of cyclohexane, C6H12, is combusted in a bomb calorimeter that has a...
41. When 0.500 g of cyclohexane, C6H12, is combusted in a bomb calorimeter that has a water sheath containing 750.0 g of water, the temperature of the water increased by 5.5 °C. Assuming that the specific heat of water is 4.18 J/(g °C), and that the heat absorption by the calorimeter is negligible, calculate the enthalpy of combustion per mole of cyclohexane.    (A). 2.90 x 106 J/mol    (B). 4.20 x 106 J/mol    (C). 1.19 x 104 J/mol...
a 5.00 g sample of TNT (C7H5N2O6) is burned in a bomb calorimeter with a heat...
a 5.00 g sample of TNT (C7H5N2O6) is burned in a bomb calorimeter with a heat capacity of 420 J/degreeC. The calorimeter contained 610 grams od water (4.18J/gdegreeC) and the temperature of the water was measured to go from 20.0 degree C to 22.5 degree C. What is the heat of combustion of TNT?. I know the answer, but can you give me a step by step explanation of how to get it?
A 21.8 g sample of ethanol (C2H5OH, 46.07 g/mol) is burned in a bomb calorimeter, according...
A 21.8 g sample of ethanol (C2H5OH, 46.07 g/mol) is burned in a bomb calorimeter, according to the following reaction equation. If the temperature of the rises from 13.0 °C to 79.3 °C, what is the heat capacity of the calorimeter? C2H5OH(l) + 3 O2(g) →2 CO2(g) + 3 H2O(g)    ΔH°rxn = –1235 kJ   
A 1.00 g sample of coffee beans was completely combusted in a bomb calorimeter (Ccal =...
A 1.00 g sample of coffee beans was completely combusted in a bomb calorimeter (Ccal = 62.1 J/o C) and caused the temperature of the water in the calorimeter to increase from 24.66 K to 27.22 K. What is the change in temperature of the water in degrees Celsius? The heat released by the coffee beans was: ? One cup of black coffee is made from 237 g of coffee beans. How many Calories are in one cup of black...
A 0.623 g sample of vanillin (C8H8O3, MM = 152.15) is combusted in a bomb calorimeter...
A 0.623 g sample of vanillin (C8H8O3, MM = 152.15) is combusted in a bomb calorimeter with a heat capacity of 5.89 kJ/ºC. Given that the heat of combustion of vanillin is -3.83x103 kJ/mol, what must the temperature change have been in the bomb calorimeter?
A 17.5 g sample of a candy bar is burned in a bomb calorimeter, which has...
A 17.5 g sample of a candy bar is burned in a bomb calorimeter, which has a heat capacity of 9.25 kJ/°C. The temperature increases from 19.7°C to 57.3°C. What is the fuel value of the candy bar? In kJ/g How many Calories are in a 77.7 g candy bar? 1 Cal = 4.184 kJ. In Cal
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT