In: Statistics and Probability
Is at least one of the two variables (weight and horsepower) significant in the model? Run the overall F-test and provide your interpretation at 5% level of significance. See Step 5 in the Python script. Include the following in your analysis:
   OLS Regression Results                            
==============================================================================
Dep. Variable:                    mpg   R-squared:                       0.822
Model:                            OLS   Adj. R-squared:                  0.808
Method:                 Least Squares   F-statistic:                     62.13
Date:                Fri, 14 Feb 2020   Prob (F-statistic):           7.88e-11
Time:                        05:00:39   Log-Likelihood:                -69.730
No. Observations:                  30   AIC:                             145.5
Df Residuals:                      27   BIC:                             149.7
Df Model:                           2                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept     37.8867      1.748     21.674      0.000      34.300      41.473
wt            -4.0629      0.694     -5.855      0.000      -5.487      -2.639
hp            -0.0318      0.009     -3.470      0.002      -0.051      -0.013
==============================================================================
Omnibus:                        5.277   Durbin-Watson:                   1.919
Prob(Omnibus):                  0.071   Jarque-Bera (JB):                3.980
Skew:                           0.878   Prob(JB):                        0.137
Kurtosis:                       3.314   Cond. No.                         620.
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified