In: Finance
A stock's returns have the following distribution:
| Demand for the Company's Products  | 
Probability of This Demand Occurring  | 
Rate of Return If This Demand Occurs  | 
| Weak | 0.1 | (38%) | 
| Below average | 0.1 | (12) | 
| Average | 0.4 | 13 | 
| Above average | 0.3 | 20 | 
| Strong | 0.1 | 47 | 
| 1.0 | 
Assume the risk-free rate is 3%. Calculate the stock's expected return, standard deviation, coefficient of variation, and Sharpe ratio. Do not round intermediate calculations. Round your answers to two decimal places.
Stock's expected return: %
Standard deviation: %
Coefficient of variation:
Sharpe ratio:
Expected Return = Sum of (probability*Return)  
       
Variance formula = Sum of (Probability * (Actual return - Required
return)^2)          
Standard deviation formula = √ Variance  
       
Coefficient of Variation = standard deviation/Expected
Return          
Sharpe ratio = (Expected Return - risk free rate)/Standard
deviation          
   Probability   Return of stock  
Product =Prob.*Return   Return deviation   
Squared deviation   Product = Sq dev * Prob.
          
           
weak   0.1   -38%  
-3.80%   -48.90%   23.91%  
2.3912%
below average   0.1   -12%  
-1.20%   -22.90%   5.24%  
0.5244%
Average   0.4   13%  
5.20%   2.10%   0.04%   0.0176%
Above average   0.3   20%  
6.00%   9.10%   0.83%   0.2484%
Strong   0.1   47%  
4.70%   36.10%   13.03%  
1.3032%
          
           
          
           
       E(R)   10.90%  
    Variance =   4.4849%
          
           
Standard deviation=      
21.18%          
   
Coefficient of Variation = 21.18%/10.90%=
1.9429
Sharpe ratio = (10.90% -3%)/21.18%
=0.3730


Please thumbsup