In: Math
set up the mclaurin series for f(x) = e^x....afterwards find the terms needed to approx. f(2pi) for an error less than 10^-7... I'm not sure what to do with that f(2pi)


To find the value of 'n', there is no other way than to run a simulation or do hit & trial to check the value of 'n' which satisfies this inequality.
Using excel, you get following output for different values of 'n' -
| n | Rn(x) | 
| 1 | 10570.18 | 
| 2 | 22138.14 | 
| 3 | 34774.5 | 
| 4 | 43698.93 | 
| 5 | 45761.41 | 
| 6 | 41075.35 | 
| 7 | 32260.5 | 
| 8 | 22522.08 | 
| 9 | 14151.04 | 
| 10 | 8083.055 | 
| 11 | 4232.278 | 
| 12 | 2045.553 | 
| 13 | 918.0419 | 
| 14 | 384.5485 | 
| 15 | 151.0118 | 
| 16 | 55.81385 | 
| 17 | 19.48271 | 
| 18 | 6.442814 | 
| 19 | 2.02407 | 
| 20 | 0.6056 | 
| 21 | 0.172959 | 
| 22 | 0.047249 | 
| 23 | 0.01237 | 
| 24 | 0.003109 | 
| 25 | 0.000751 | 
| 26 | 0.000175 | 
| 27 | 3.92E-05 | 
| 28 | 8.5E-06 | 
| 29 | 1.78E-06 | 
| 30 | 3.61E-07 | 
| 31 | 7.08E-08 | 
So, we need n = 31 to get the value of f(2
)
accurate to 10-7.
So, number of terms needed = n +1
=32
Because the first term is 1.
_________________________