In: Economics
Table 6.9 shows some of the expenditure amounts in the economy of Arkinia. The MPC, the MTR, and the MPM are all constant, as are the values of the three injections.
Y |
T |
YD |
C |
S |
I |
G |
X |
IM |
XN |
AE |
0 |
|
|
|
|
60 |
150 |
50 |
|
|
|
100 |
|
50 |
|
−10 |
|
|
|
|
30 |
|
200 |
75 |
|
120 |
5 |
|
|
|
|
|
|
300 |
100 |
|
180 |
|
|
|
|
40 |
|
|
400 |
125 |
|
|
35 |
|
|
|
50 |
|
|
500 |
|
|
300 |
|
|
|
|
60 |
|
|
600 |
|
425 |
|
|
|
|
|
|
|
|
700 |
|
|
420 |
|
|
|
|
|
|
|
800 |
|
575 |
|
95 |
|
|
|
|
−40 |
|
TABLE 6.9 |
a) Complete Table 6.9, and in Figure
6.12 graph a 45° line and the aggregate expenditure
function, labelled AE1. Identify expenditure equilibrium
with the letter e1.
It shall be noted that MPC, MTR, and MPM are constant.
(C1,Y1) = (120, 200)
(C2, Y2) = (180, 300)
The MPC = (C2-C1)/(Y2-Y1) = (180-120)/(300-200) = 60/100 = 0.6
C = MPC*Y
YD = Y - T
C + S = YD
(Y1, T1) = (200 , 75)
(Y2, T2) = (300, 100)
The MTR = (T2-T1)/(Y2-Y1) = (100-75)/(300-200)
= 25/100
=0.25
T = 25 + MTR*Y
(M1, Y1) = (40, 300)
(M2, Y2) = (50, 400)
The MPM = (M2-M1)/(Y2-Y1) = (50-40)/(400-300)
=10/100
=0.10
M = 10 +MPM*Y
I = 60
G = 150
X = 50
XN = X - M
Thus, the complete table is:
Y | T | YD | C | S | I | G | X | IM | XN | AE |
(C + I + | ||||||||||
G + XN) | ||||||||||
0 | 25 | -25 | 0 | -25 | 60 | 150 | 50 | 10 | 40 | 250 |
100 | 50 | 50 | 60 | -10 | 60 | 150 | 50 | 20 | 30 | 300 |
200 | 75 | 125 | 120 | 5 | 60 | 150 | 50 | 30 | 20 | 350 |
300 | 100 | 200 | 180 | 20 | 60 | 150 | 50 | 40 | 10 | 400 |
400 | 125 | 275 | 240 | 35 | 60 | 150 | 50 | 50 | 0 | 450 |
500 | 150 | 350 | 300 | 50 | 60 | 150 | 50 | 60 | -10 | 500 |
600 | 175 | 425 | 360 | 65 | 60 | 150 | 50 | 70 | -20 | 550 |
700 | 200 | 500 | 420 | 80 | 60 | 150 | 50 | 80 | -30 | 600 |
800 | 225 | 575 | 480 | 95 | 60 | 150 | 50 | 90 | -40 | 650 |
On graphing the 45-degree line and AE1, the result is:
The expenditure equilibrium is identified with the letter e1