In: Civil Engineering
A strut W 200 x 300 x 19.3 is used as a 10m long fixed connected column. Using the Euler's Formula determine the column's critical load and the critical stress.
Solution:- the values given in the question are as follows:
length of column(L)=10 m
size of wide flange column(strut)=W 200*300*19.3
bf=width of flange=300 mm
dw=depth of web=161.4 mm
Calculating Euler's load(critical load)(Pe):-
according to euler's formula critical load is given by-
, [Eq-1]
where, Pe=critical load(euler's load)
Le=effective length
Le=L/2=10/2 , for both end fixed
Le=5 m , or 5000 mm
E=young's modulus of elaticity
E=2*10^5 N/mm^2 , for steel
Imin= minimum moment of inertia about centroid
Imin=minimum of {Ixx , Iyy}
Ixx=moment of inertia about centroid parallel X-axis
Iyy=moment of inertia about centroid parallel Y-axis
Calculating Ixx and Iyy:-
the cross-section of column is symmetrical about both X-axis and Y-axis, so the centroid of section is occur middle of the web shown in above figure.
Ixx=2*moment of inertia of flange about centroid parallel to X-axis+moment of inertia of web about centroid parallel to X-axis.
Ixx=2[(bf*t^3)/12+{bf*t*(h/2-t/2)^2}]+t*dw^3/12
Ixx=2*[(300*19.3^3)/12+{300*19.3*(100-9.65)^2}]+19.3*161.4^3/12
Ixx=94888411.4+6762178.867
Ixx=101650590.3 mm^4
Iyy=2*moment of inertia of flange about centroid parallel to Y-axis+moment of inertia of web about centroid parallel toY-axis.
Iyy=2*[t*bf^3/12]+bw*t^3/12
Iyy=2*[19.3*300^3/12]+161.4*19.3^3/12
Iyy=86850000+96692.81665
Iyy=86946692.82 mm^4
Ixx is greater than Iyy, so minimum moment of inertia is Iyy
Imin=Iyy
Imin=86946692.82 mm^4
values put in above equation-(1) and calculate the value of pe
Pe=(3.14^2*2*10^5*86946692.82)/(5000^2)
Pe=6865035.697 N
pe=6865.0356 kN
Column's critical load(Pe)=6865.0356 kN
Calculating direct stress(d) of column:-
direct critical stress(d)=force(Pe)/area of column
where, force=Pe=6865035.697 N
area of column(A)=2*bf*t+dw*t
area of column(A)=2*300*19.3+161.4*19.3
area of column(A)=14695.02 mm^2
direct stress(d)=6865035.697/14695.02
direct critical stress(d)=467.1674 N/mm^2
critical stress(d)=467.1674 N/mm^2
[Ans]