Question

In: Physics

What is the behavior of the energy fluctuations in an ideal gas with law pV =...

What is the behavior of the energy fluctuations in an ideal gas with law pV = N kBT when N → ∞?

Solutions

Expert Solution

Energy fluctuations with respect to mean energy goes to zero as Nt to infinity .


Related Solutions

I need A and C ± Changes in Volume The ideal gas law (PV=nRT) describes the...
I need A and C ± Changes in Volume The ideal gas law (PV=nRT) describes the relationship among pressure P, volume V, temperature T, and molar amount n. When some of these variables are constant, the ideal gas law can be rearranged in different ways to take the following forms where k is a constant: Name Expression Constant Boyle's law PV=nRT=k n and T Charles's law VT=nRP=k n and P Avogadro's law Vn=RTP=k T and P Part A A certain...
What is the ideal gas law constant?
What is the ideal gas law constant?please give details.
Check all the correct statements. The internal energy of an ideal gas (those that obey PV...
Check all the correct statements. The internal energy of an ideal gas (those that obey PV = nRT) depends only the temperature of the system. The internal energy of any gas depends only the temperature of the system. The heat capacity of an ideal gas does not depend on what molecules the gas is made of. At constant temperature, the internal energy of a real gas increases with increasing pressure because molecules are closer together. We assume that the conditions...
What is an ideal gas law? How did scientist arrive at the present day ideal gas...
What is an ideal gas law? How did scientist arrive at the present day ideal gas equation. (Hint: explain different gas laws and how you come to ideal gas law equation using all the laws)
1 Ideal Gas Law The ideal gas law is familiar to anyone who has taken a...
1 Ideal Gas Law The ideal gas law is familiar to anyone who has taken a college chemistry course: P V = νRT. This problem will show you why the ideal gas law has this form. We can arrive at this expression just by using classical mechanics! Consider a box of volume V containing N particles, each having mass m, that are moving horizontally with average speed v. The particles bounce back and forth between the end walls of the...
The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles...
The ideal gas law PV=nRT relates pressure P, volume V, temperature T, and number of moles of a gas, n. The gas constant R equals 0.08206 L⋅atm/(K⋅mol) or 8.3145 J/(K⋅mol). The equation can be rearranged as follows to solve for n: n=PVRT This equation is useful when dealing with gaseous reactions because stoichiometric calculations involve mole ratios. Part A When heated, calcium carbonate decomposes to yield calcium oxide and carbon dioxide gas via the reaction CaCO3(s)→CaO(s)+CO2(g) What is the mass...
For the ideal gas law to be most applicable, it is best for the gas to...
For the ideal gas law to be most applicable, it is best for the gas to exist at?
1.What are the components of the ideal gas law and what are their units of measurement?...
1.What are the components of the ideal gas law and what are their units of measurement? Write out the answer to this question. 2.What does the line look like on the Pressure vs. Volume graph for gases?
An ideal gas that goes through a cyclical process on a PV diagram and returns to...
An ideal gas that goes through a cyclical process on a PV diagram and returns to the location on the PV diagram where it began. analyze changes in temperature and thermal energy of the gas change during the cycle. Analyze transfers of energy through heat and work during various stages of the cycle. note: including formulas in the analysis would be helpful.
An ideal gas that goes through a cyclical process on a PV diagram and returns to...
An ideal gas that goes through a cyclical process on a PV diagram and returns to the location on the PV diagram where it began. analyze changes in temperature and thermal energy of the gas change during the cycle. Analyze transfers of energy through heat and work during various stages of the cycle. note: including formulas in the analysis would be helpful.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT