Question

In: Economics

Cameron buys cheese, C, and grapes, G. His utility function is U = 5C^0.25 G^0.75. The...

Cameron buys cheese, C, and grapes, G. His utility function is U = 5C^0.25 G^0.75. The price of cheese is Pc and the price of grapes is Pg.

[a.] What are his uncompensated demand functions for cheese and grapes?

[b.] What are his compensated demand functions for cheese and grapes?

[c.] Find his expenditure function.

[d.] What is his Engel curve for cheese? What is his Engel curve for gapes?

Solutions

Expert Solution


Related Solutions

Assume that a worker has the Utility Function U(C,L) = C 0.25​ ​ L0.75​ “C” refers...
Assume that a worker has the Utility Function U(C,L) = C 0.25​ ​ L0.75​ “C” refers to consumption in dollars and “L” to hours of leisure in a day. The worker has an offered wage of $10 per hour, 20 hours available for leisure or work per day, and $90 dollars a day from non-labour income. a)     ​ Find the budget constraint equation of the individual.​                   b)    ​ Find the optimal choice for the individual in terms of units of...
Andre buys two goods, food f and clothing c , with the utility function U (...
Andre buys two goods, food f and clothing c , with the utility function U ( f, c ) = f · c + f . His marginal utility of food is M U f = c + 1 and his marginal utility of clothing is M U c = f . He has an income of 20. The price of clothing is 4. a. Derive the equation representing Andre’s demand for food, and draw this demand curve for prices...
Carina buys two goods, food F and clothing C, with the utility function U = FC...
Carina buys two goods, food F and clothing C, with the utility function U = FC + F. Her marginal utility of food is MUF= C + 1 and her marginal utility of clothing is MUC= F. She has an income of 20. The price of clothing is 4. a) Her demand for food is represented by F = 20/PF , where PF is price for Food. True/False. b) Calculate the income effects on Carina’s consumption of food when the...
Utility function over clothing (C) and greens (G) is defined by the function U(C,G)=C^(1/4)+G^(1/4). Let P(of...
Utility function over clothing (C) and greens (G) is defined by the function U(C,G)=C^(1/4)+G^(1/4). Let P(of C) and P(of G) denote the prices of cherries and grapes respectively. W is income that is available to consumer to spend on those two goods. (a) Write down the customer's utility maximization problem. (b) set up the langrangian and solve for the first order condition. (c) Solve for the consumer's demand functions for clothing and greens. Please Explain.
Braden views Coke (C) and Pepsi (S) as perfect substitutes. His utility function is: U =...
Braden views Coke (C) and Pepsi (S) as perfect substitutes. His utility function is: U = C + S. The corresponding marginal utility for each good is: MUC = 1 and MUS = 1. The price of a 12-ounce can of Coke is $4 and the price of a 12-ounce can of Pepsi is $3. Also, assume that his income is $60. Find Branden's utility-maximizing bundle of Coke and Pepsi. Make sure to show all your work. Show his optimal...
Consider the following utility function: U = 100X0.10 Y 0.75. A consumer faces prices of Px...
Consider the following utility function: U = 100X0.10 Y 0.75. A consumer faces prices of Px = $5 and Py =$5. Assuming that graphically good X is on the horizontal axis and good Y is on the vertical axis, suppose the consumer chooses to consume 7 units of good X and 15 units of good Y. Then the marginal rate of substitution6 is equal to: MRS = . (Enter your response rounded to two decimal places. Do not forget to...
Amy’s utility function is U = √ C, where C is consumption and is given by...
Amy’s utility function is U = √ C, where C is consumption and is given by C = Income − Expenses. Amy’s income is $10,000 and there is a 5% chance that she will get sick, which would cost $3,600 in medical expenses. (a) (5 points) What is Amy’s expected utility if she doesn’t have insurance? (b) (5 points) What is the actuarially fair premium for a full-coverage insurance plan? What is the actuarially fair premium for an insurance plan...
There are two goods – c and p. The utility function is U (P,C) = P...
There are two goods – c and p. The utility function is U (P,C) = P 0.75 C 0.25. $32 is allocated per week for the two goods, c and p. The price of p is $ 4.00 each, while the price of c is $ 2.00 each. Solve for the optimal consumption bundle. Suppose that the price for good p is now $ 2.00 each. Assuming nothing else changes, what is the new optimal consumption bundle. Draw the appropriate...
A individual has a utility function u(c) = √ c, where c is the individual’s consumption....
A individual has a utility function u(c) = √ c, where c is the individual’s consumption. (The individual consumes his entire wealth.) The individual’s wealth is $40,000 per year. However, there is a 2% chance that he will be involved in a catastrophic accident that will cost him $30,000. PLEASE SHOW WORK a. What is the individual’s utility from consumption if there is no accident? What is his utility if there is an accident? What is his expected utility? b....
Question 1: Given the following utility function: (U=Utility, l=leisure, c=consumption) U = 2l + 3c and...
Question 1: Given the following utility function: (U=Utility, l=leisure, c=consumption) U = 2l + 3c and production function: (Y=Output, N or Ns=Labour or Labour Supply) Y = 30N1/2 If h = 100 and G =10 (h=Hours of labour, G=Government spending). Find the equilibrium levels of the real wage (w), consumption (c), leisure (l), and output (Y). Question 2: (Continuting from question 1) a, Find the relationship between total tax revenue and the tax rate if G = tWN. (G=Government spending,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT