In: Statistics and Probability
The following represent the scores
63 96 71 91 65 62 73 66 85 28 70 82 68 71 77 67 85 53 68 80 82 45 60 42 30 83 45 94 55 56 65 87 96 47 88 51 79 100 92 77 64 83 41 58 77 70 89 78 52 96 77 75 74 77 88 67 47 38 83 81 66 77 61 68 53 88 72 48 77 77 100 53 68 42 60 72 72 59 48 59 45 77 75 53 85 77 93 76 82 73 52 96 75 66 80 84 67 99 67 52 70 68 88 69 40 72 77 66 35 50 89 82 78 66 65 47 71 75 77 33 73 83 70 81 70 88 69 66 69 54 67 64 70 77 70 40 92 50 81 70 72 67 66 68 82 78 45 70 85 77 98 77 65 68
81 43 77 95 46 41 83 91 68 80 54 81 65 51 66 83 77 53 52 51 49 79 71 35 56 43 48 79 81 75 86 77 58 83 86 90 69 25 78 78 42 70 65 73 66 70
Answer the following:
N =
∑ Xi =
µ =
Median =
Mode =
Are these scores representative of a Population or a Sample?
Sort the data into the following bins and complete the chart:
Grade on Statistics | Frequency | Relative Frequency |
A: 90 – 100 | ||
B: 80 – 89 | ||
C: 65 – 79 | ||
D: 50 – 64 | ||
F: Below 50 | ||
Totals |
We first enter the given dataset in R and then using following R-code , we get the required statistic values.
Assume that the variable "x" contains the entire dataset.
> length(x)
[1] 200
> sum(x)
[1] 13814
> mean(x)
[1] 69.07
> median(x)
[1] 70
For finding mode we first save following function as R script, then apply it to our "x".
getmode <- function(v) { uniqv <- unique(v) uniqv[which.max(tabulate(match(v, uniqv)))] }
> getmode(x)
[1] 77
So, we have all answers shown above in R code
These scores are representative of a population.
Class distribution is obtained by following R-code :
> breaks<-c(25,50,65,80,90,101)
> x.cut<-cut(x,breaks,right=FALSE)
> x.freq<-table(x.cut)
> x.freq
x.cut
[25,50) [50,65) [65,80) [80,90) [90,101)
28 30 90 36 16
So, final table :
grade | freq | relative freq |
90-100 | 16 | 16/200 = 0.08 |
80-89 | 36 | 0.18 |
65-79 | 90 | 0.45 |
50-64 | 30 | 0.15 |
<50 | 28 | 0.14 |