In: Computer Science
1-List the different ways to represent signed integers and represent (-75) in these ways.
Convert the following:
Find the two's complement for the following
2- Compute the following signed integer and determine if either there carry or overflow
=====================================
Different ways to represent signed integers are-------
1. sign and magnitude
2. 1's complement
3. 2's complement
Now represent -75 In these ways
1. sign and magnitude
so we use 7 bit to represent 75 and 1 bit for sign
(-75)10 = (11001011)2
2. 1's complement
-75 = 10110100
3. 2's complement
-75 = 10110101
====================================
Convert the following
A. (345)10 = ( )2
   345/2 = 172 + 1
   172/2 = 86   + 0
   86/2 = 43   + 0
   43/2 = 21   + 1
   21/2 = 10   + 1
   10/2 = 5    + 0
   5/2   = 2    + 1
   2/2   = 1    + 0
   1/2   = 0    + 1
   (345)10 = (101011001)2
  
B. (563)10 = ( )16
   563/16 = 35 + 3
   35/16   = 2 + 3
   2/16    = 0 + 2
  
   (563)10 = (233)16
  
C. (2AB5)16 = ( )2
   2      A  
    B      5
      0010 1010 1011 0101
(2AB5)16 = (10101010110101)2
D. (1011111100111100)2 = (   
)16
       1011 1111 0011 1100
        
B     F    3   C
       
     (1011111100111100)2 =
(BF3C)16
    
===========================================================================
Two's complement for the following
   
A. (11011101100100)2
     invert the digit and add 1 to it
     step 1 -Invert the digit
           
11011101100100
          
00100010011011
      step2 - add 1 to the final
result
            
00100010011011
            
       + 1
            
00100010011100     
        
   
      so now two's complement of
(11011101100100)2 is 00100010011100  
  
    
B. (34BC)16
To find a twos complement of hexadecimal first we have to
convert it into its binary form
       
3         4   
   B       C
     0011 0100 1011   1100
   
      invert the digit and add 1 to
it
     step 1 -Invert the digit
            0011 0100
1011 1100
           1100 1011
0100 0011
      step2 - add 1 to the final
result
            
1100101101000011
            
       + 1
            
1100101101000100
        
   
      so now two's complement of
(0011010010111100)2 is 1100101101000100
    
      1100   1011  
0100 0100  
      
C          B
   4 4
     
       So two's complement of
(34BC)16 = (CB44)16
     
======================================================================================
   
2 compute
A. (01001110)2 + (10101100)2 = (    )2
   + 1 0 0 1 1 1 0    (+ 78)
   - 0 1 0 1 1 0
0              
(- 44)
     ---------------------------------
   + 0 1 0 0 0 1
0             
(+ 34)
  
   (01001110)2 + (10101100)2 = (00100010)2
********************************************************************
   
B. (01111000)2+ (00110001)2 = (  
)2
          0 1 1 1 1 0 0 0
   ( 120)
      + 0 0 1 1 0 0 0
1          
(49)
      ===================
        1 0 1 0 1 0 0 1
   (169)
      
      
        (01111000)2+
(00110001)2 = (010101001)2
**********************************************************************
      
C. (00101101)2 - (01111110)2   = (
)2
         
45     -   126
    
      first complement of 1111110 is
0000001
    
      hence minud
=                   
0101101
      first complement of subtrahend =
0000001
                                      
0101110
                                     
--------
                                      
1010001
                                     
      no carry hence the difference is
negative
         answer is  
-1010001        (-81)