In: Statistics and Probability
Given the following data:
0.83 | 0.88 | 0.88 | 1.04 | 1.09 | 1.12 | 1.29 | 1.31 |
1.48 | 1.49 | 1.59 | 1.62 | 1.65 | 1.71 | 1.76 | 1.83 |
Calculate a point estimate of the mean value and find the (estimated) standard error of the estimator you used.
S.No | X | (X-x̄) | (X-x̄)2 | |
1 | 0.83 | -0.51813 | 0.2685 | |
2 | 0.88 | -0.46813 | 0.2191 | |
3 | 0.88 | -0.46813 | 0.2191 | |
4 | 1.04 | -0.30813 | 0.0949 | |
5 | 1.09 | -0.25813 | 0.0666 | |
6 | 1.12 | -0.22813 | 0.0520 | |
7 | 1.29 | -0.05813 | 0.0034 | |
8 | 1.31 | -0.03813 | 0.0015 | |
9 | 1.48 | 0.13188 | 0.0174 | |
10 | 1.49 | 0.14188 | 0.0201 | |
11 | 1.59 | 0.24188 | 0.0585 | |
12 | 1.62 | 0.27188 | 0.0739 | |
13 | 1.65 | 0.30188 | 0.0911 | |
14 | 1.71 | 0.36188 | 0.1310 | |
15 | 1.76 | 0.41188 | 0.1696 | |
16 | 1.83 | 0.48188 | 0.2322 | |
Σx | 21.57 | Σ(X-x̄)2= | 1.719 | |
x̄=Σx/n | 1.3481 | s2=Σ(x-x̄)2/(n-1)= | 0.1146 | |
s=√s2 = | 0.3385 |
from above:
point estimate of the mean value =1.3481
and standard error of the estimator =s/√n =0.3385/√16=0.0846