Question

In: Advanced Math

(1 point) Use Euler's method with step size 0.1 to estimate y(2), where y(x) is the...

(1 point) Use Euler's method with step size 0.1 to estimate y(2), where y(x) is the solution of the initial-value problem y′=−5x+sin(y), y(0)=−1.

Solutions

Expert Solution


Related Solutions

Use Euler's method with step size 0.2 to estimate y(0.4), where  y(x) is the solution of the...
Use Euler's method with step size 0.2 to estimate y(0.4), where  y(x) is the solution of the initial-value problem y' = 3x − 4xy, y(0) = 0. (Round your answer to four decimal places.) y(0.4) = (b) Repeat part (a) with step size 0.1. (Round your answer to four decimal places.) y(0.4) =
Use Euler's method with the given step size to estimate y(1.4) where y(x) is the solution...
Use Euler's method with the given step size to estimate y(1.4) where y(x) is the solution of the initial-value problem y′=x−xy ,y(1)=3.
Use Euler's Method with step size 0.11 to approximate y (0.55) for the solution of the...
Use Euler's Method with step size 0.11 to approximate y (0.55) for the solution of the initial value problem    y ′ = x − y, and y (0)= 1.2 What is y (0.55)? (Keep four decimal places.)
Use Euler's method with each of the following step sizes to estimate the value of y(0.8),...
Use Euler's method with each of the following step sizes to estimate the value of y(0.8), where y is the solution of the initial-value problem: y' = y, y(0) = 5. (i)    h = 0.8 y(0.8) = 9 (ii) h = 0.4 y(0.8) = 9.8 (iii)     h = 0.2 y(0.8) = ? The error in Euler's method is the difference between the exact value and the approximate value. Find the errors made in part (a) in using Euler's method to estimate...
Use Euler's method with step size 0.5 to compute the approximate y-values y1, y2, y3 and...
Use Euler's method with step size 0.5 to compute the approximate y-values y1, y2, y3 and y4 of the solution of the initial-value problem. y' = y − 5x, y(3) = 1. y1 = ______ y2 =______ y3 =_______ y4=________ Please show all work, neatly, line by line and justify steps so that I can learn. Thank you!
1. Use Euler's method with step size 0.50.5 to compute the approximate yy-values y1≈y(0.5), y2≈y(1),y3≈y(1.5), and...
1. Use Euler's method with step size 0.50.5 to compute the approximate yy-values y1≈y(0.5), y2≈y(1),y3≈y(1.5), and y4≈y(2) of the solution of the initial-value problem y′=1+3x−2y,   y(0)=2. y1= y2= y3= y4= 2.   Consider the differential equation dy/dx=6x, with initial condition y(0)=3 A. Use Euler's method with two steps to estimate y when x=1: y(1)≈ (Be sure not to round your calculations at each step!) Now use four steps: y(1)≈ B. What is the solution to this differential equation (with the given initial...
Exercise (a) Use Euler's method with each of the following step sizes to estimate the value...
Exercise (a) Use Euler's method with each of the following step sizes to estimate the value of y(1.6), where y is the solution of the initial-value problem y' = y, y(0) = 6. (i)    h = 1.6 (ii)    h = 0.8 (iii)    h = 0.4 Exercise (b) We know that the exact solution of the initial-value problem in part (a) is y = 6ex. Draw, as accurately as you can, the graph of y = 6ex, 0 ≤ x ≤ 1.6, together with...
Using Runge-Kutta method of order 4 to approximate y(1) with step size h = 0.1 and...
Using Runge-Kutta method of order 4 to approximate y(1) with step size h = 0.1 and h = 0.2 respectively (keep 8 decimals): dy/dx = x + arctan y, y(0) = 0. Solutions: when h = 0.1, y(1) = 0.70398191. when h = 0.2, y(1) = 0.70394257.
Use MuPAD to find the point on the line y = 2 – x/3 that is closest to the point x = -3, y = 1.
Use MuPAD to find the point on the line y = 2 – x/3 that is closest to the point x = -3, y = 1.  
Solve STEP BY STEP using power series about x = -1, 4(x+1)^2 y'' - 2(x+1)(x+3) y'...
Solve STEP BY STEP using power series about x = -1, 4(x+1)^2 y'' - 2(x+1)(x+3) y' + (x+4) y = 0. note, solve by power series, variable transformation by letting: w= x+1 = 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT