In: Accounting
A German car will cost $45,000 and have fuel usage of
21mpg for the first 5 years, and decrease
by 1% thereafter to year 8. Repair cost will start at $1000 in year
1 and increase by 4% per year.
It will have a salvage value of $7000 at the end of year 8.
Insurance cost will be $850 the first year,
increasing by 2% per year thereafter.
The American car will cost $35,000 and have fuel usage of 20mpg for
the first 3 years, and will
decrease by 3% per year thereafter. Repair cost will be $800 in
year 1, increasing by 4% per year
thereafter. Being an American, the graduate will price the pride of
owning an American car at $0.4
for every 20 miles driven, increasing by 2% per year. Insurance
cost will be $800 per year
increasing by 2.2% per year. The car can be sold for $5500 at the
end of year 8.
If the graduate anticipates driving 150000 miles by the end of year
8 and the average interest rate
is expected to remain at 5% per year, which car is economically
affordable based on present worth
analysis? Assume fuel cost will be $3 per gallon in year 1 and
increase by an average of 2% per
year. Show all your workings.
Solution
German Car
Year | Cost | Fuel Usage A |
Miles Driven 150000 Spread Evenly -B |
No. of Gallons - B/A C |
Fuel Cost per gallon D |
Fuel Cost C*D |
Repair Cost | Insurance Cost | Salvage Value | Total | PVF @5% | Present Value of Cost |
0 | $45,000.00 | $ 45,000.00 | $ 1.0000 | $ 45,000.00 | ||||||||
1 | 21.00 | 18750.00 | 892.86 | $ 3.00 | $ 2,678.57 | $ 1,000.00 | $ 850.00 | $ 4,528.57 | $ 0.9524 | $ 4,312.93 | ||
2 | 21.00 | 18750.00 | 892.86 | $ 3.06 | $ 2,732.14 | $ 1,040.00 | $ 867.00 | $ 4,639.14 | $ 0.9070 | $ 4,207.84 | ||
3 | 21.00 | 18750.00 | 892.86 | $ 3.12 | $ 2,786.79 | $ 1,081.60 | $ 884.34 | $ 4,752.73 | $ 0.8638 | $ 4,105.58 | ||
4 | 21.00 | 18750.00 | 892.86 | $ 3.18 | $ 2,842.52 | $ 1,124.86 | $ 902.03 | $ 4,869.41 | $ 0.8227 | $ 4,006.08 | ||
5 | 21.00 | 18750.00 | 892.86 | $ 3.25 | $ 2,899.37 | $ 1,169.86 | $ 920.07 | $ 4,989.30 | $ 0.7835 | $ 3,909.25 | ||
6 | 20.79 | 18750.00 | 901.88 | $ 3.31 | $ 2,987.23 | $ 1,216.65 | $ 938.47 | $ 5,142.35 | $ 0.7462 | $ 3,837.30 | ||
7 | 20.58 | 18750.00 | 910.99 | $ 3.38 | $ 3,077.75 | $ 1,265.32 | $ 957.24 | $ 5,300.31 | $ 0.7107 | $ 3,766.83 | ||
8 | 20.38 | 18750.00 | 920.19 | $ 3.45 | $ 3,171.02 | $ 1,315.93 | $ 976.38 | $ -7,000.00 | $ -1,536.67 | $ 0.6768 | $ -1,040.08 | |
Present Value of Cost | $ 72,105.73 |
American Car
Year | Cost | Fuel Usage A |
Miles Driven 150000 Spread Evenly -B |
No. of Gallons - B/A C |
Fuel Cost per gallon D |
Fuel Cost C*D |
Repair Cost | Insurance Cost | Pride of Owning American Car | Salvage Value | Total | PVF @5% | Present Value of Cost |
0 | $35,000.00 | $35,000.00 | $ 1.0000 | $ 35,000.00 | |||||||||
1 | 20.00 | 18750.00 | 937.50 | $ 3.00 | $ 2,812.50 | $ 800.00 | $ 800.00 | $ 375.00 | $ 4,787.50 | $ 0.9524 | $ 4,559.52 | ||
2 | 20.00 | 18750.00 | 937.50 | $ 3.06 | $ 2,868.75 | $ 832.00 | $ 817.60 | $ 375.00 | $ 4,893.35 | $ 0.9070 | $ 4,438.41 | ||
3 | 20.00 | 18750.00 | 937.50 | $ 3.12 | $ 2,926.13 | $ 865.28 | $ 835.59 | $ 375.00 | $ 5,001.99 | $ 0.8638 | $ 4,320.91 | ||
4 | 19.40 | 18750.00 | 966.49 | $ 3.18 | $ 3,076.96 | $ 899.89 | $ 853.97 | $ 375.00 | $ 5,205.82 | $ 0.8227 | $ 4,282.84 | ||
5 | 18.82 | 18750.00 | 996.39 | $ 3.25 | $ 3,235.56 | $ 935.89 | $ 872.76 | $ 375.00 | $ 5,419.21 | $ 0.7835 | $ 4,246.09 | ||
6 | 18.25 | 18750.00 | 1027.20 | $ 3.31 | $ 3,402.34 | $ 973.32 | $ 891.96 | $ 375.00 | $ 5,642.62 | $ 0.7462 | $ 4,210.61 | ||
7 | 17.71 | 18750.00 | 1058.97 | $ 3.38 | $ 3,577.72 | $ 1,012.26 | $ 911.58 | $ 375.00 | $ 5,876.56 | $ 0.7107 | $ 4,176.36 | ||
8 | 17.17 | 18750.00 | 1091.72 | $ 3.45 | $ 3,762.14 | $ 1,052.75 | $ 931.64 | $ 375.00 | $ -5,500.00 | $ 621.52 | $ 0.6768 | $ 420.67 | |
Present Value of Cost | $65,655.42 |
Therefore from the above American Car which costs $65,655.42 which is economically affordable based on present worth analysis.