Question

In: Physics

A specific type of ideal gas has a specific heat capacity at constant pressure (cp=cv+R) that...

A specific type of ideal gas has a specific heat capacity at constant pressure (cp=cv+R) that is a function of temperature T, such that cp=0.48T+885, where cp has units of J/kg/K and T has units of K. The gas, which is initially at T1 = 314 K and P1 = 1x105 Pa, undergoes a reversible adiabatic process such that its final temperature is T2 = 772 K. Calculate the pressure of the gas (in Pa) in this final state. Assume the following ideal gas constant: R = 287 J/kg/K. Recall that ds = cpdT/T – RdP/P

Solutions

Expert Solution


Related Solutions

An ideal gas has a constant volume specific heat cv as a function of temperature. Find...
An ideal gas has a constant volume specific heat cv as a function of temperature. Find the change in internal energy and enthalpy if the gas is heated from a temperature of 300K to 600K. cv(T) = 716.66 + 0.4T + 0.000667T2 J/kg.K Also, sketch the constant pressure specific heat as a function of temperature and mention the point T = 400K on the cp – T diagram. Assume that the gas constant of the given ideal gas is 286.9...
The ideal gas heat capacity of nitrogen varies with temperature. It is given by: Cp =...
The ideal gas heat capacity of nitrogen varies with temperature. It is given by: Cp = 29.42-(2.170 *10-3) T + (0.0582*10-5) T2 + (1.305*10-8) T3 – (0.823*10-11) T4. T is in K and Cp is in Joule/(mole K). Assuming that N2 is an ideal gas: A) How much internal energy (per mole) must be added to nitrogen to increase its temperature from 450 to 500 K. B) Repeat part A for an initial temperature of 273 K and final temperature...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV =...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV = 5 2 R always starts at pressure 1.00 ✕ 105 Pa and temperature 350 K. For each of the following processes, determine the final pressure (Pf, in kPa), the final volume (Vf, in L), the final temperature (Tf, in K), the change in internal energy of the gas (ΔEint, in J), the energy added to the gas by heat (Q, in J), and the...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV =...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV = (5/2)R always starts at pressure 2.00 ✕ 105 Pa and temperature 300 K. For each of the following processes, determine the final pressure (Pf, in kPa), the final volume (Vf, in L), the final temperature (Tf, in K), the change in internal energy of the gas (ΔEint, in J), the energy added to the gas by heat (Q, in J), and the work done...
A 1.50 mol sample of an ideal gas with a molar specific heat of CV =...
A 1.50 mol sample of an ideal gas with a molar specific heat of CV = 5/2 R always starts at pressure 2.00 ✕ 105 Pa and temperature 250 K. For each of the following processes, determine the final pressure (Pf, in kPa), the final volume (Vf, in L), the final temperature (Tf, in K), the change in internal energy of the gas (ΔEint, in J), the energy added to the gas by heat (Q, in J), and the work...
A 2.50 mol sample of an ideal gas with a molar specific heat of CV =...
A 2.50 mol sample of an ideal gas with a molar specific heat of CV = 5/2 R always starts at pressure 1.50 • 10^5 Pa and temperature 300 K. For each of the following processes, determine the final pressure (Pf, in kPa), the final volume (Vf, in L), the final temperature (Tf, in K), the change in internal energy of the gas (ΔEint, in J), the energy added to the gas by heat (Q, in J), and the work...
4.1) A perfect gas has a constant volume molar heat capacity of CV ,m  1.5...
4.1) A perfect gas has a constant volume molar heat capacity of CV ,m  1.5  R and a constant pressuremolarheatcapacityofCp,m 2.5R.Fortheprocessofheating2.80molofthisgaswitha 120 W heater for 65 seconds, calculate a) q, w, T, and U for heating at a constant volume, b) q, w, T, and H for heating at a constant pressure. 4.2) Determine the heat capacity Cp and the molar heat capacity Cp,m of a solid sample from the observation that transferring the sample with n =...
A perfect gas has a constant molar volume heat capacity of Cvm=1.5R and a constant pressure...
A perfect gas has a constant molar volume heat capacity of Cvm=1.5R and a constant pressure molar heat capacity of Cpm=2.5R. For the process of heating 2.80 mol of this gas with a 120 W heater for 65 seconds, calculate: a) q, w, delta(T), and delta(U) for heating at a constant volume b) q, w, delta(T), and delta(H) for heating at a constant pressure
3.0 moles of an ideal gas with a molar heat capacity at constant volume of 4.9...
3.0 moles of an ideal gas with a molar heat capacity at constant volume of 4.9 cal/(mol·K) and a molar heat capacity at constant pressure of 6.9 cal/(mol·K) starts at 300 K and is heated at constant pressure to 320 K, then cooled at constant volume to its original temperature. How much heat flows into the gas during this two-step process?
A hydrostatic system consists of 0.1 moles of an ideal gas whose specific heat capacity at...
A hydrostatic system consists of 0.1 moles of an ideal gas whose specific heat capacity at constant volume, ??, is equal to 3?2 where R is the gas constant equal to 8.31 J mol–1 K–1. Its initial pressure and volume are 32 Pa and 8 m3. In its final state, the pressure is just 1 Pa and its volume increases eightfold. The particular thermodynamic process can be represented on an indicator diagram as a straight line joining the initial and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT