In: Finance
Explain optimal risky portfolio
Optimal Risky portfolio is the portfoli with Least risk.
I.e at the given weights, Portfolio will have lesser risk other than any combination weights of securities in portfolio.
Ex:
Particulars | Amount |
SD of A | 10% |
SD of B | 15% |
r | 0.5000 |
Weight in A = [ [ (SD of B)^2] - [ SD of A * SD of B * r(A,B) ] ] / [ [ (SD of A)^2 ]+ [ (SD of B)^2 ] - [ 2* SD of A * SD of B * r (A, B) ] ] |
= [ [ (0.15)^2 ] - [ 0.1 * 0.15 * 0.5 ] ] / [ [ (0.1)^2 ] + [ ( 0.15 )^2 ] - [ 2 * 0.1 * 0.15 * 0.5 ] ] |
= [ [ 0.0225 ] - [ 0.0075 ] ] / [ [ 0.01 ] + [ 0.0225 ] - [ 2 * 0.0075 ] ] |
= [ 0.015 ] / [ 0.0175 ] |
= 0.8571 |
Weight in B = [ [ (SD of A)^2] - [ SD of A * SD of B * r(A,B) ] ] / [ [ (SD of A)^2 ]+ [ (SD of B)^2 ] - [ 2* SD of A * SD of B * r (A, B) ] ] |
= [ [ (0.1)^2 ] - [ 0.1 * 0.15 * 0.5 ] ] / [ [ (0.1)^2 ] + [ ( 0.15 )^2 ] - [ 2 * 0.1 * 0.15 * 0.5 ] ] |
= [ [ 0.01 ] - [ 0.0075 ] ] / [ [ 0.01 ] + [ 0.0225 ] - [ 2 * 0.0075 ] ] |
= [ 0.0025 ] / [ 0.0175 ] |
= 0.1429 |
If we invest in the specified weights portfolio will give Lesser risk.
Portfolio risk at Optimal portfolio:
Particulars | Amount |
Weight in A | 0.8571 |
Weight in B | 0.1429 |
SD of A | 10.00% |
SD of B | 15.00% |
r(1,2) | 0.5 |
Portfolio SD = SQRT[((Wa*SDa)^2)+((Wb*SDb)^2)+2*(wa*SDa)*(Wb*SDb)*r(1,2)] |
=SQRT[((0.8571*0.1)^2)+((0.1429*0.15)^2)+2*(0.8571*0.1)*(0.1429*0.15)*0.5] |
=SQRT[((0.08571)^2)+((0.021435)^2)+2*(0.08571)*(0.021435)*0.5] |
=SQRT[0.0096] |
9.82% |
Portfolio SD at other combination of Weights:
For Ex:
Particulars | Amount |
Weight in A | 0.3000 |
Weight in B | 0.7000 |
SD of A | 10.00% |
SD of B | 15.00% |
r(1,2) | 0.5 |
Portfolio SD = SQRT[((Wa*SDa)^2)+((Wb*SDb)^2)+2*(wa*SDa)*(Wb*SDb)*r(1,2)] |
=SQRT[((0.3*0.1)^2)+((0.7*0.15)^2)+2*(0.3*0.1)*(0.7*0.15)*0.5] |
=SQRT[((0.03)^2)+((0.105)^2)+2*(0.03)*(0.105)*0.5] |
=SQRT[0.0151] |
12.28% |
Pls do rate, if the answer is correct and comment, if any further assistance is required.