In: Statistics and Probability
Dominick Aldo owns and operates Carolina’s which is an Italian
restaurant in New York. The file Single Population.xlsx is shown
below and contains the amount of time that table times varied from
table to table.
A) Test the hypothesis that the average table time exceeds 98
minutes using 0.05 ? = . B) What is the p-value? Interpret the
results.
Be sure that your project shows the following steps 1. Null and
alternative hypothesis 2. Determine which distribution to use for
the test statistic. 3. Using data provided, calculate necessary
sample statistics. 4. Draw a conclusion and interpret the
decision.
Time 70 80 100 90 75 60 70 75 110 90 100 75 60 75 80 75 165 60 75
90 110 95 110 150 50 70 90 110 165 60 145 80 115 75 50 90 110 90
100 110 110 85 70 145 120 130 80 90 105 105 100 95 80 100 120 130
75 90 70 125 80 90 95 120 150 195 70 80 110 80 80 85 90 150 60 90
135 170 85 90 120 105 60 70 50 80 100 90 135 120
1. Null and alternative hypothesis
Null Hypothesis:
H0:mu=98
Alternative Hypothesis:
H1:mu>98
Determine which distribution to use for the test statistic.
normal distribution since sample szie n=90 which is n>30 ,use t statistic since population deviation is not known.
Solution3:
n=90
population mean=98
sample mean=96.77778
sample standard deviation=s=29.10955
critical value=1.662,
standard error of mean=s/sqrt(n)
=29.10955/sqrt(90)
standard error of mean=3.068
level of significance=0.05
t=sample mean-population mean/sample sd/sqrtn)
=96.77778-98/29.10955/sqrt(90)
t=-0.39832
degrees of freedom=n-1=90-1=89
4. Draw a conclusion and interpret the decision.
p=0.6543
p>0.05
Do not reject Null hypothesis.
Accept null hypothesis.
Conclusion:
there is no sufficient evidence at 5% level of significance to support the claim that the average table time exceeds 98 minutes .
Code in R:
time <- c(70, 80, 100 ,90, 75, 60, 70, 75, 110, 90,
100, 75, 60, 75 ,80 ,75, 165, 60, 75, 90,
110, 95, 110, 150, 50, 70, 90, 110, 165, 60,
145, 80 ,115, 75, 50, 90, 110, 90, 100, 110 ,
110, 85 ,70 ,145, 120, 130 ,80, 90, 105, 105 ,
100, 95, 80, 100, 120, 130, 75, 90, 70, 125 ,
80, 90, 95, 120, 150, 195 ,70, 80, 110, 80, 80,
85, 90, 150 ,60, 90, 135, 170, 85, 90, 120, 105 ,
60, 70 ,50 ,80, 100 ,90 ,135, 120)
t.test(time,mu=98,alternative ="greater" )
output:
One Sample t-test
data: time
t = -0.39832, df = 89, p-value = 0.6543
alternative hypothesis: true mean is greater than 98
95 percent confidence interval:
91.67759 Inf
sample estimates:
mean of x
96.77778
t=-0.39832
p= 0.6543
p>0.05
Do not reject H0.