Question

In: Physics

A wave pulse travels along a string at a speed of 250 cm/s . Note that...

A wave pulse travels along a string at a speed of 250 cm/s . Note that parts a - d are independent and refer to changes made to the original string. Units in cm/s. Pease show work, thank you.

A) What will be the speed if the string's tension is doubled?

B) What will be the speed if the string's mass is quadrupled (but its length is unchanged)?

C) What will be the speed if the string's length is quadrupled (but its mass is unchanged)?

D) What will be the speed if the string's mass and length are both quadrupled?

Solutions

Expert Solution


Related Solutions

A sinusoidal wave is traveling on a string with speed 34.9 cm/s. The displacement of the...
A sinusoidal wave is traveling on a string with speed 34.9 cm/s. The displacement of the particles of the string at x = 5.9 cm is found to vary with time according to the equation y = (3.9 cm) sin[1.2 - (7.1 s-1)t]. The linear density of the string is 4.8 g/cm. What are (a) the frequency and (b) the wavelength of the wave? If the wave equation is of the form y(x,t) = ym sin(kx - ωt), what are...
What quantities determine how quickly a wave travels along a string? Choose all that apply.. a)Mass...
What quantities determine how quickly a wave travels along a string? Choose all that apply.. a)Mass of the string b)Length of the string c)Tension in the string d)Linear density of the string
1. The speed of the wave on your Cello string is: 90 m/s The length of...
1. The speed of the wave on your Cello string is: 90 m/s The length of your string is: 690 mm Keep in mind that the wavelength (λ), the frequency (f) and the wave speed (v) are related according to v = f λ. (a) Draw the shapes of the motion of the string for vibration that your string will produce when plucked or bowed (up to the 6th Harmonic). (Of course, a plucked or bowed string will vibrate in...
A wave pulse travels down a slinky. The mass of the slinky is m = 0.89...
A wave pulse travels down a slinky. The mass of the slinky is m = 0.89 kg and is initially stretched to a length L = 6.6 m. The wave pulse has an amplitude of A = 0.28 m and takes t = 0.414 s to travel down the stretched length of the slinky. The frequency of the wave pulse is f = 0.45 Hz. 1) What is the speed of the wave pulse?  2) What is the tension in...
Transverse waves on a string have wave speed v = 8.00 m/s, amplitude A = 0.0700...
Transverse waves on a string have wave speed v = 8.00 m/s, amplitude A = 0.0700 m, and wavelength λ = 0.320 m. The waves travel in the -x direction, and at t = 0 the x =0 end of the string has its maximum upward displacement. 1) Find the frequency of these waves. 2) Find the period of these waves. 3) Find the wave number of these waves. 4) Write a wave function describing the wave. Express your answer...
A wave in which the particles in the medium move perpendicularly to the direction that the wave travels along the medium is called
A wave in which the particles in the medium move perpendicularly to the direction that the wave travels along the medium is called a transverse wave. a longitudinal wave. a sound wave.  a seismic wave  a water wave.
The drawing shows a snapshot of a transverse wave moving to the left on a string. The wave speed is 10.0 m/s. At the instant the snapshot is taken,
The drawing shows a snapshot of a transverse wave moving to the left on a string. The wave speed is 10.0 m/s. At the instant the snapshot is taken, (a) In what direction is point A moving? (b) In what direction is point B moving? (c) At which of these points is the speed of the string segment (not the wave speed) larger? Explain. (d) How do your answers change if the wave moves to the right instead?
If the wavelength of the standing wave of a 60-cm long guitar string is 40 cm,...
If the wavelength of the standing wave of a 60-cm long guitar string is 40 cm, and it has antinodes at x = 10, 30, and 50 cm and nodes at x = 0, 20, 40 and 60 cm, what is the wavelength of the longest wavelength standing wave pattern that can fit on this guitar string?
A transverse sinusoidal wave on a string has a period T = 27.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 27.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 2.00 m/s. What is the phase constant? in rad Write the wave function for the wave. (Use the form Asin(kx + ωt + ϕ). Round...
A transverse sinusoidal wave on a string has a period T = 29.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 29.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 1.50 m/s. (a) What is the amplitude of the wave? __________m (b) What is the phase constant? __________rad (c) What is the maximum transverse speed...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT