Question

In: Physics

1. Set L = 5 mH, C = 8 µF, R = 0 Ω, and Q...

1. Set L = 5 mH, C = 8 µF, R = 0 Ω, and Q = 2E-6 C. Measure the maximum current through the circuit, and the period of the oscillation.

Now increase the inductance of the inductor by 50% to 7.5 mH

calculate max current = ________ A   period T = ________ s.

2. Reset to L = 5 mH, C = 8 µF, keep R = 0 Ω, and Q = 2E-6 C.

Keeping the charge on the capacitor plates constant, halve the capacitance of the capacitor to 4 µF .

calculate max current = ________ A   period T = ________ s.

Please solve both, thanks!

Solutions

Expert Solution


Related Solutions

1. An L-R-C circuit consists of a 5 µF capacitor, a 2 mH inductor and a...
1. An L-R-C circuit consists of a 5 µF capacitor, a 2 mH inductor and a 50 Ω resistor, connected in series to an ac source of variable angular frequency ω, but of fixed voltage amplitude V​​​​​​s. At the resonance frequency, the amplitude of the current oscillations in this circuit is measured to be 100 mA. (a) In your own words explain what is meant by the resonance behaviour of an L-R-C series ac circuit. At what frequency of the...
An RLC circuit with R = 23.8 Ω , L = 327 mH , and C...
An RLC circuit with R = 23.8 Ω , L = 327 mH , and C = 45.7 μF is connected to an ac generator with an rms voltage of 25 V A: Determine the average power delivered to this circuit when the frequency of the generator is equal to the resonance frequency. B: Determine the average power delivered to this circuit when the frequency of the generator is twice the resonance frequency C: Determine the average power delivered to...
For the circuit 10 Vp AC with R=10 Ω, and L=8.2 mH (in series) compute XL...
For the circuit 10 Vp AC with R=10 Ω, and L=8.2 mH (in series) compute XL Z, iRMS, VR, VL for different frequencies ranging from f=20 Hz to f=100 Hz at 20 Hz intervals, and from then onwards, discrete values f= 200, 500, 1000, 2000 and 5000 Hz. Plot frequency (x-axis, logarithmic) vs. and frequency (x-axis, logarithmic). What happens to the circuit as frequency increases (which component is taking over?).
An RLC circuit, with R = 12 Ω, L = 1 H, C = 0.01 f,...
An RLC circuit, with R = 12 Ω, L = 1 H, C = 0.01 f, connects to a 20 V source. If the switch is initially off and turns on after 10 seconds, staying on for 20 seconds , to then be permanently disconnected, also at the beginning consider that the capacitor is discharged and that the current is zero. Determine: a) The accumulated charge on the capacitor for t = 8sec b) The accumulated charge in the capacitor...
Graph the production functions below. Q= 6L−1/4L2 , L ≥ 8 Q= 1/4L2 + 2L, 0 < L < 8
Graph the production functions below. Q= 6L−1/4L2 , L ≥ 8 Q= 1/4L2 + 2L, 0 <  L < 8 a. Graph the marginal product and average product curves. b. Find the maximum attainable production. How much labor is used at that level? c. Identify the ranges over which the marginal product is increasing and decreasing. d. Identify the range over which the marginal product of labor is negative. e. Identify the ranges over which the average product of labor is...
An RLC circuit has L = 250 mH, C = 0.200 ?F, and R = 2.00...
An RLC circuit has L = 250 mH, C = 0.200 ?F, and R = 2.00 k?. What is the angular frequency of its damped oscillations?
An L-R-C series circuit consists of a 2.40 μF capacitor, a 6.00 mH inductor, and a...
An L-R-C series circuit consists of a 2.40 μF capacitor, a 6.00 mH inductor, and a 60.0 Ω resistor connected across an ac source of voltage amplitude 10.0 V having variable frequency. Part A: At what frequency is the average power delivered to the circuit equal to 1/2*V_rms*I_rms? (ω = ____rad/s) Part B: Under the conditions of part (a), what is the average power delivered to each circuit element? (P_R, P_C, P_L = ____W) Part C: What is the maximum...
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L =...
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L = 8.80 mH, and E = Emsinωdt with Em = 44.8 V and ωd = 2900 rad/s. For time t = 0.434 ms find (a) the rate Pg at which energy is being supplied by the generator, (b) the rate PC at which the energy in the capacitor is changing, (c) the rate PL at which the energy in the inductor is changing, and (d)...
In the given circuit an inductor of L = 8.95-mH and a resistor of R =...
In the given circuit an inductor of L = 8.95-mH and a resistor of R = 17.9-Ω resistor are connected in series with a dc battery of E = 8.80-V. What is the voltage across the resistor immediately after the switch is closed? What is the voltage across the resistor after the switch has been closed for a long time? What is the current in the inductor after the switch has been closed for a long time?
In a series oscillating RLC circuit, R =16.0 W, C =5.0 mF, L =20.0 mH, and...
In a series oscillating RLC circuit, R =16.0 W, C =5.0 mF, L =20.0 mH, and e=emsin (wt) with em =45.0 V and frequency of oscillation is 50 Hz. For time t= 0.4 s find (a) the rate PCat which the energy in the capacitor is changing, and (b) the rate PRat which energy is being dissipated in the resistor.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT