In: Economics
Refer to the TV Revenue data set. Perform a complete multiple regression analysis that might be used to predict net revenue using all provided explanatory variables (there are 4 explanatory variables). Complete all steps for the multiple regression as outlined in class and modify the original model if necessary. Use an alpha = .10 for all hypotheses tests. Make sure you show each required step for any hypothesis test. Provide all required Minitab output with your written responses.
Obs | NetRevenue | ShipCost | PrintAds | WebAds | Rebate% |
1 | 561.45 | 9.64 | 57.62 | 51.81 | 16.44 |
2 | 458.74 | 11.58 | 69.41 | 56.92 | 16.31 |
3 | 408.44 | 13.28 | 51.91 | 55.12 | 11.33 |
4 | 396.71 | 8.70 | 34.24 | 45.62 | 12.31 |
5 | 466.64 | 8.29 | 42.68 | 44.50 | 16.29 |
6 | 464.39 | 8.72 | 55.46 | 46.46 | 7.25 |
7 | 278.67 | 12.62 | 44.77 | 49.93 | 11.46 |
8 | 630.08 | 12.16 | 63.28 | 64.17 | 15.25 |
9 | 296.58 | 15.43 | 37.78 | 39.71 | 12.07 |
10 | 414.98 | 7.61 | 41.29 | 46.11 | 10.97 |
11 | 440.82 | 8.29 | 70.15 | 58.49 | 9.48 |
12 | 475.11 | 10.06 | 65.51 | 51.05 | 12.51 |
13 | 365.32 | 11.86 | 55.83 | 51.70 | 6.80 |
14 | 415.51 | 12.75 | 46.25 | 29.09 | 11.98 |
15 | 366.30 | 6.45 | 51.49 | 37.52 | 11.05 |
16 | 409.82 | 10.08 | 42.49 | 41.42 | 7.88 |
17 | 361.01 | 4.87 | 58.46 | 44.57 | 14.48 |
18 | 365.12 | 11.07 | 45.32 | 48.98 | 9.06 |
19 | 529.96 | 12.72 | 72.16 | 40.58 | 12.35 |
20 | 425.58 | 11.47 | 33.60 | 82.36 | 9.30 |
21 | 548.67 | 10.58 | 47.14 | 52.85 | 12.97 |
22 | 656.11 | 12.33 | 68.56 | 69.69 | 19.27 |
23 | 438.83 | 10.84 | 60.24 | 38.24 | 13.33 |
24 | 412.20 | 10.54 | 55.02 | 46.14 | 11.56 |
25 | 445.37 | 10.40 | 56.03 | 39.98 | 14.24 |
26 | 634.71 | 12.13 | 60.39 | 63.54 | 17.35 |
27 | 449.15 | 7.28 | 54.28 | 57.43 | 6.88 |
28 | 464.53 | 13.54 | 53.22 | 83.29 | 10.04 |
29 | 482.98 | 9.38 | 57.15 | 26.89 | 14.00 |
30 | 399.45 | 9.16 | 56.24 | 47.83 | 9.88 |
31 | 563.15 | 9.45 | 59.34 | 61.96 | 12.44 |
32 | 283.96 | 9.36 | 43.27 | 26.60 | 9.82 |
33 | 315.19 | 8.82 | 33.97 | 34.72 | 8.25 |
34 | 430.05 | 7.30 | 50.60 | 57.49 | 16.74 |
35 | 465.33 | 7.41 | 48.03 | 41.33 | 10.65 |
36 | 589.27 | 8.47 | 42.88 | 56.26 | 13.90 |
37 | 326.81 | 8.96 | 30.49 | 50.76 | 9.39 |
38 | 395.67 | 13.54 | 44.01 | 38.46 | 9.14 |
39 | 439.24 | 6.54 | 49.75 | 18.89 | 14.34 |
40 | 456.59 | 6.97 | 51.94 | 50.45 | 10.90 |
41 | 500.93 | 10.24 | 36.48 | 46.36 | 11.64 |
42 | 618.82 | 13.62 | 46.79 | 63.67 | 15.43 |
43 | 356.20 | 8.49 | 51.88 | 46.13 | 13.85 |
44 | 447.52 | 8.02 | 30.25 | 35.87 | 14.25 |
45 | 338.28 | 10.54 | 44.43 | 47.11 | 11.43 |
46 | 130.93 | 8.89 | 39.34 | 43.00 | 6.62 |
47 | 481.22 | 11.27 | 50.48 | 65.72 | 10.16 |
48 | 391.85 | 8.87 | 53.60 | 42.21 | 9.92 |
49 | 460.46 | 5.27 | 49.41 | 25.56 | 15.01 |
50 | 438.84 | 8.73 | 56.41 | 47.97 | 9.87 |
Below are regression results -
Below is the estimated regression equation:
1. We can see that shipcost is negatively associated with net
revenue but the relationship is not statistically significant at
10% level. This can be verified by looking at the p-value which is
more than 0.10.
2. Other predictors like PrintAds, WebAds and Rebates are
positively associated with Net revenue. The relationship is
statistically significant as the p-value is less than 0.10