Question

In: Statistics and Probability

The average amount you spend on a lunch during the week is not known. Based on...

The average amount you spend on a lunch during the week is not known. Based on past experience, you are willing to assume that the standard deviation is $2.10. You take a random sample of 28 lunches, and apply the central limit theorem. Round your answer to 2 decimal places. Fill in the blank: The 68–95–99.7 rule says that the probability is about 0.95 that is within $ ____ of the population mean mu.

Solutions

Expert Solution

ANSWER:

Given that,

Let X be the amount that you spend on any given lunch. Let the mean of X be dollars (the population mean of your spending on a lunch). The standard deviation of X is dollars. We do not know the distribution of X (normal or otherwise).

Let indicate the sample average of amount spend on lunch for a sample of size n=28 lunches

Using the central limit theorem, we know that has an approximate normal distribution with mean and standard deviation (or called standard error of mean) of

Now we use the 68-95-99.7 rule, which says that approximately 95% of all the values of a normally distributed population lie with in 2 standard deviations of mean.

That means for a given sample of 28 lunches, 95% of the times, the sample average would lie with in

dollars of mean of which is

Ans:

The 68-95-99.7 rule says that the probability is about 0.95 that is within $0.79 of the population mean.


Related Solutions

Applying the 68-95-99.7 rule. The average amount you spend on a lunch during the week is...
Applying the 68-95-99.7 rule. The average amount you spend on a lunch during the week is not known. Based on past experience, you are willing to assume that the standard deviation is $2.10. You are taking a random sample of 28 lunches. The 68-95-99.7 rule says that the probability is about 0.95 that x with bar on top is within $_________ of the population mean μ. Fill in the blank (report to two decimal places)
A small university knows the average amount that its students spend on lunch each day. The...
A small university knows the average amount that its students spend on lunch each day. The amount spent on lunches for the population of 500 students is not highly skewed and has a mean of $8 and a standard deviation of $2. Suppose simple random sample of 49 students is taken, what is the probability that the sample mean for the sample of 49 students will be between $7.50 and $8.50?
Students of a large university spend an average of $5 a day on lunch. The standard...
Students of a large university spend an average of $5 a day on lunch. The standard deviation of the expenditure is $3. A simple random sample of 36 students is taken. What are the expected value, standard deviation, and shape of the sampling distribution of the sample mean? What is the probability that the sample mean will be at least $4? What is the probability that the sample mean will be at least $5.90?
Students of a large university spend an average of $6 a day on lunch. The standard...
Students of a large university spend an average of $6 a day on lunch. The standard deviation of the expenditure is $2. A simple random sample of 81 students is taken. 1. What is the probability that the sample mean will be at least $5.25? 2. What is the probability that the sample mean will be at least $6.50? 3. What is the range of money spent by people who fall within one standard deviation of the mean? 4. Kelsey...
Students of a large university spend an average of $7 a day on lunch. The standard...
Students of a large university spend an average of $7 a day on lunch. The standard deviation of the expenditure is $2. A simple random sample of 25 students is taken. What is the probability that the sample mean will be at least $4? Jason spent $15 on his lunch. Explain, in terms of standard deviation, why his expenditure is not usual. Explain what information is given on a z table. For example, if a student calculated a z value...
A random sample of 29 lunch customers was taken at a restaurant The average amount of...
A random sample of 29 lunch customers was taken at a restaurant The average amount of time the customers in the sample stayed in the restaurant was 45 minutes with a standard deviation of 14 minutes. a) Compute the standard error of the mean? b) Construct a 68% confidence interval for the true average amount of time customers spent in the restaurant? c) Construct a 90% confidence interval for the true average amount of time customers spent in the restaurant?...
A random sample of 49 lunch customers was taken at a restaurant. The average amount of...
A random sample of 49 lunch customers was taken at a restaurant. The average amount of time these customers stayed in the restaurant was 45 minutes with a standard deviation of 14 minutes. a. Compute the standard error of the mean. b. Construct a 95% confidence interval for the true average amount of time customers spent in the restaurant. c. With a .95 probability, how large of a sample would have to be taken to provide a margin of error...
A random sample of 49 lunch customers was taken at a restaurant. The average amount of...
A random sample of 49 lunch customers was taken at a restaurant. The average amount of time these customers stayed in the restaurant was 45 minutes with a sample standard deviation of 14 minutes. Compute the standard error of the mean. At 95% confidence, what is the confidence interval estimate? Construct a 99% confidence interval for the true average amount of time customers spent in the restaurant. Compare the margin of errors and width of your confidence intervals from parts...
During the first week of lockdown, you decided not to spend more than $30 on your...
During the first week of lockdown, you decided not to spend more than $30 on your food. You ate only hotdog with burger bread, and that also in a 1:1 combination, and nothing else. The prices of both these goods were $1 per unit. Find out the optimum amount of hotdog and burger bread you consumed that week. In the second week, due to lack of supply the price of hotdog increased to $2 while the price of burger bread...
1. The mean amount of money that U.S adults spend on food in a week is...
1. The mean amount of money that U.S adults spend on food in a week is $140 and standard deviation is $42. Random samples of size 40 are drawn from this population and the mean of each sample is determined. a. Find the mean and standard deviation of the sampling distribution of sample means. b. What is the probability that the mean amount spent on food in a week for a certain sample is more than $143? c. What is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT