Question

In: Statistics and Probability

The Metropolitan Bus Company claims that the mean waiting time for a bus during rush hour...


The Metropolitan Bus Company claims that the mean waiting time for a bus during rush hour is less than 10 minutes. A random sample of 20 waiting times has a mean of 8.6 minutes with a sample standard deviation of 2.1 minutes. At ? = 0.01, test the bus company's claim. Assume the distribution is normally distributed.

-

critical value z0 = -2.326; standardized test statistic ? -2.981; reject H0; There is sufficient evidence to support the Metropolitan Bus Company's claim.

-

critical value t0 = -2.539; standardized test statistic ? -2.981; reject H0; There is sufficient evidence to support the Metropolitan Bus Company's claim.

Solutions

Expert Solution

The claims of the Metropolitan Bus Company is that "the mean waiting time for a bus during rush hour is less than 10 minutes".

Sample size = n = 20

sample mean = = 8.6 minutes

sample standard deviation = s= 2.1 minutes.

level of significance ? = 0.01,

We want to test the bus company's claim.

here we assume that the distribution is normally distributed.

Since population standard deviation is not given and we used sample satnadrd deviation instead of population standard deviation. So we need to do t test for testing the above claim

Critical value of t (tc ) for = 0.01 and degrees of freedom = df = n - 1 = 20 - 1 = 19

tc = "=TINV(0.02,19)" = 2.329

Since the test is left tailed so we need to assign negative sign.

formula of t test statistic is

So the correct answer is "critical value t0 = -2.539; standardized test statistic ? -2.981; reject H0; There is sufficient evidence to support the Metropolitan Bus Company's claim."


Related Solutions

The metropolitan bus company claims that the mean wait time for a bus during rush hour...
The metropolitan bus company claims that the mean wait time for a bus during rush hour is less than 7 minutes. A random sample of 20 waiting times has a mean of 5.6 minutes with a standard deviation of 2.1 minutes. At a= 0.01, test the bus company’s claim. Assume the distribution is normally distributed.
A bus company official claims that the mean waiting time for a bus during peak hours...
A bus company official claims that the mean waiting time for a bus during peak hours is less than 10 minutes. Karen took a bus during peak hours on 18 different occasions. Her mean waiting time was 9.1 minutes with a standard deviation of 2.1 minutes. At the 0.05 significance level, test the claim that the mean waiting time is less than 10 minutes by providing each of the following: a. the null and alternative hypothesis b. the test statistic...
A public bus company official claims that the mean waiting time for bus number 14 during...
A public bus company official claims that the mean waiting time for bus number 14 during peak hours is less than 10 minutes. Karen took bus number 14 during peek hours on 18 different occasions. Her mean waiting time was 7.6 minutes with a standard deviation of 2.3 minutes. At the 0.01 significance level, test the claim that the mean waiting time is less than 10 minutes. Use the P-value method of testing hypotheses.
1) a) A public bus company official claims that the mean waiting time for bus number...
1) a) A public bus company official claims that the mean waiting time for bus number 14 during peak hours is less than 10 minutes. Karen took bus number 14 during peak hours on 18 different occasions. Her mean waiting time was 8.2 minutes with a standard deviation of 1.6 minutes. At the 0.01 significance level, test the claim that the mean waiting time is less than 10 minutes. Use the traditional (rejection region) method of testing. b) Use the...
The mean number of arrival at an airport during rush hour is 20 planes per hour...
The mean number of arrival at an airport during rush hour is 20 planes per hour while the mean number of departures is 30 planes per hour. Let us suppose that the arrivals and departures can each be described by a respective poisson process. The number of passengers in each arrival or departure has a mean of 100 and a coefficient of variation of 40%. a.) What is the probability that there will be a total of two arrivals and/or...
Suppose that the waiting time for a bus is normally distributed with a mean of 5...
Suppose that the waiting time for a bus is normally distributed with a mean of 5 minutes and a standard deviation of 2.5 minutes. (a) Find the probability that the waiting time for the bus is between 3 minutes and 7 minutes. (b) If you randomly choose 4 passengers, find the sampling distribution of their average waiting time. Please indicate shape, mean and standard deviation. (c) For the randomly selected 4 passengers, find the probability that their average waiting time...
The number of buses that arrive at a bus stop during a one-hour time span can...
The number of buses that arrive at a bus stop during a one-hour time span can be modeled as a Poisson process with rate λ (see Remark below). Now suppose a passenger has just arrived at the bus stop and starts waiting. Let Y be the time (in unit of hours) she needs to wait to see the first bus. (a) Is Y a discrete or continuous random variable? Find the set of all possible values of Y . (b)...
A bank claims that the mean waiting time in line is less than 1.7 minutes. A...
A bank claims that the mean waiting time in line is less than 1.7 minutes. A random sample of 20 customers has a mean of 1.5 minutes with a standard deviation of 0.8 minute. Test the bank’s claim at 0.01 level of significance.
Bus waiting time is uniformly distributed with the shortest and the longest waiting times being 7...
Bus waiting time is uniformly distributed with the shortest and the longest waiting times being 7 and 38 minutes respectively. What is the standard deviation of the average waiting time of 57 passenger
A local retailer claims that the mean waiting time is less than 8 minutes. A random...
A local retailer claims that the mean waiting time is less than 8 minutes. A random sample of 20 waiting times has a mean of 6.8 minutes with a standard deviation of 2.1 minutes. At a = 0.01, test the retailer's claim. Assume the distribution is normally distributed. Round the test statistic to the nearest thousandth.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT