In: Statistics and Probability
1. Listed below are the temperatures from nine males measured at 8 AM and again at 12 AM.
(a) Construct a scatter plot.
(b) Find the coefficient of correlation and corresponding p value.
(c) Based on the graph, does there appear to be a relationship between 8 AM temperatures and 12 AM temperatures? How significant is this relationship? State the null hypothesis and accept or reject it. Give your reason for the decision.
| 8 AM | 12 AM | 
| 
 98.0  | 
98.0 | 
| 97.0 | 97.6 | 
| 98.6 | 98.8 | 
| 97.4 | 98.0 | 
| 97.4 | 98.8 | 
| 98.2 | 98.8 | 
| 98.2 | 97.6 | 
| 96.6 | 98.6 | 
| 97.4 | 98.6 | 
At least how many values are two standard deviations away from the mean if
(d) the distribution is normal? (e) the distribution is skewed?
a)

b)
| x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 98 | 98 | 0.1264 | 0.0968 | -0.1106 | 
| 97 | 97.6 | 0.4153 | 0.5057 | 0.4583 | 
| 98.6 | 98.8 | 0.9131 | 0.2390 | 0.4672 | 
| 97.4 | 98 | 0.0598 | 0.0968 | 0.0760 | 
| 97.4 | 98.8 | 0.0598 | 0.2390 | -0.1195 | 
| 98.2 | 98.8 | 0.3086 | 0.2390 | 0.2716 | 
| 98.2 | 97.6 | 0.31 | 0.51 | -0.40 | 
| 96.6 | 98.6 | 1.09 | 0.08 | -0.30 | 
| 97.4 | 98.6 | 0.06 | 0.08 | -0.07 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 878.80 | 884.80 | 3.34 | 2.09 | 0.28 | 
| mean | 97.64 | 98.31 | SSxx | SSyy | SSxy | 
sample size ,   n =   9  
       
here, x̅ = Σx / n=   97.644   ,
    ȳ = Σy/n =   98.311  
          
       
SSxx =    Σ(x-x̅)² =    3.3422  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   0.3  
       
          
       
correlation coefficient ,    r = Sxy/√(Sx.Sy)
=   0.1043
Ho:   ρ = 0  
Ha:   ρ ╪ 0  
n=   9  
alpha,α =    0.05  
correlation , r=   0.1043  
t-test statistic = r*√(n-2)/√(1-r²) =   
    0.277
DF=n-2 =   7  
p-value =    0.7895  
Decison:   P value > α, So, Do not reject
Ho  
c)
there does not appear to be a relationship between 8 AM temperatures and 12 AM temperatures
relationship is not significant.
because P value =0.7895 > α, So, Do not reject Ho